969 resultados para HIGH TEMPERATURES
Resumo:
Significant genotypic differences in tolerance of pollen germination and seed set to high temperatures have been shown in sorghum. However, it is unclear whether differences were associated with variation in either the threshold temperature above which reproductive processes are affected, or in the tolerance to increased temperature above that threshold. The objectives of this study were to (a) dissect known differences in heat tolerance for a range of sorghum genotypes into differences in the threshold temperature and tolerance to increased temperatures, (b) determine whether poor seed set under high temperatures can be compensated by increased seed mass, and (c) identify whether genotypic differences in heat tolerance in a controlled environment facility (CEF) can be reproduced in field conditions. Twenty genotypes were grown in a CEF under four day/night temperatures (31.9/21.0 °C, 32.8/21.0 °C, 36.1/21.0 °C, and 38.0/21.0 °C), and a subset of six genotypes was grown in the field under four different temperature regimes around anthesis. The novelty of the findings in this study related to differences in responsiveness to high temperature—genotypic differences in seed set percentage were found for both the threshold temperature and the tolerance to increased maximum temperature above that threshold. Further, the response of seed set to high temperature in the field study was well correlated to that in the CEF (R2 = 0.69), although the slope was significantly less than unity, indicating that heat stress effects may have been diluted under the variable field conditions. Poor seed set was not compensated by increased seed mass in either CEF or field environments. Grain yield was thus closely related to seed set percentage. This result demonstrates the potential for development of a low-cost field screening method to identify high-temperature tolerant varieties that could deliver sustainable yields under future warmer climates.
Resumo:
The question of the existence or otherwise of an athermal temperature region of plastic flow in metals is examined. It is suggested that the athermal region is absent in metals with large dislocation densities. Such an explanation is provoked by a fairly recent proposition that the unzipping of attractive junctions is a plausible rate-controlling mechanism at high temperatures.
Resumo:
Quantum chromodynamics (QCD) is the theory describing interaction between quarks and gluons. At low temperatures, quarks are confined forming hadrons, e.g. protons and neutrons. However, at extremely high temperatures the hadrons break apart and the matter transforms into plasma of individual quarks and gluons. In this theses the quark gluon plasma (QGP) phase of QCD is studied using lattice techniques in the framework of dimensionally reduced effective theories EQCD and MQCD. Two quantities are in particular interest: the pressure (or grand potential) and the quark number susceptibility. At high temperatures the pressure admits a generalised coupling constant expansion, where some coefficients are non-perturbative. We determine the first such contribution of order g^6 by performing lattice simulations in MQCD. This requires high precision lattice calculations, which we perform with different number of colors N_c to obtain N_c-dependence on the coefficient. The quark number susceptibility is studied by performing lattice simulations in EQCD. We measure both flavor singlet (diagonal) and non-singlet (off-diagonal) quark number susceptibilities. The finite chemical potential results are optained using analytic continuation. The diagonal susceptibility approaches the perturbative result above 20T_c$, but below that temperature we observe significant deviations. The results agree well with 4d lattice data down to temperatures 2T_c.
Resumo:
An attempt to systematically investigate the effects of microstructural parameters in influencing the resistance to fatigue crack growth (FCG) in the near-threshold region under three different temper levels has been made for a high strength low alloy steel to observe in general, widely different trends in the dependence of both the total threshold stress intensity range, DELTA-K(th) and the intrinsic or effective threshold stress intensity range, DELTA-K(eff-th) on the prior austenitic grain size (PAGS). While a low strain hardening microstructure obtained by tempering at high temperatures exhibited strong dependence of DELTA-K(th) on the PAGS by virtue of strong interactions of crack tip slip with the grain boundary, a high strength, high strain hardening microstructure as a result of tempering at low temperature exhibited a weak dependence. The lack of a systematic variation of the near-threshold parameters with respect to grain size in temper embrittled structures appears to be related to the wide variations in the amount of intergranular fracture near threshold. Crack closure, to some extent provides a basis on which the increases in DELTA-K(th) at larger grain sizes can be rationalised. This study, in addition, provides a wide perspective on the relative roles of slip behaviour embrittlement and environment that result in the different trends observed in the grain size dependence of near-threshold fatigue parameters, based on which the inconsistency in the results reported in the literature can be clearly understood. Assessment of fracture modes through extensive fractography revealed that prior austenitic grain boundaries are effective barriers to cyclic crack growth compared to martensitic packet boundaries, especially at low stress intensities. Fracture morphologies comprising of low energy flat transgranular fracture can occur close to threshold depending on the combinations of strain hardening behaviour, yield strength and embrittlement effects. A detailed consideration is given to the discussion of cyclic stress strain behaviour, embrittlement and environmental effects and the implications of these phenomena on the crack growth behaviour near threshold.
Resumo:
The addition of 3 wt% Cu to heat-resistant SUS 304H austenitic steel enhances its high temperature mechanical properties. To further improve the properties, particularly the creep resistance and ductility at high temperatures, a post-solutionizing heat-treatment method that involves an intermediated annealing either at 700 or 800 degrees C after solutionizing for durations up to 180 min was employed. The purpose this heat-treatment is to precipitate planar Cr23C6 at the grain boundaries, which results in the boundaries getting serrated. Detailed microstructural analyses of these `grain boundary engineered' alloys was conducted and their mechanical performance, both at room temperature and at 750 degrees C, was evaluated. While the grain size and texture are unaffected due to the high temperature hold, the volume fraction of Sigma 3 twin boundaries was found to increase significantly. While the strength enhancement was only marginal, the ductility was found to increase significantly, especially at high temperature. A marked increase in the creep resistance was also noted, which is attributed to the reduction of the grain boundary sliding by the grain boundary serrations and the suppression of grain boundary cavitation through the optimization of the volume fraction and spacing of the Cr23C6 precipitates. The special heat-treatment performed with holding time of 3 h at 700 degrees C resulted in the optimum combination of strength, ductility and creep resistance at high temperature. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Free-standing Pt-aluminide (PtAl) bond coat, when subjected to tensile testing at high temperatures (T >= 900 degrees C), exhibits significant decrease in strength and increase in ductility during deformation at strains exceeding that corresponding to the ultimate tensile strength (UTS), i.e., in the post-UTS regime. The stress-strain curve is also marked by serrations in this regime. Electron back scattered diffraction (EBSD) and transmission electron microscopy (TEM) studies suggest dynamic recovery and recrystallization (DRR) as the mechanisms for the observed tensile behavior in the coating. Activation energy values suggest vacancy diffusion assists DRR. The fine recrystallized grains formed after deformation had a strong < 110 > texture. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
This paper describes multiple field-coupled simulations and device characterization of fully CMOS-MEMS-compatible smart gas sensors. The sensor structure is designated for gas/vapour detection at high temperatures (>300 °C) with low power consumption, high sensitivity and competent mechanic robustness employing the silicon-on-insulator (SOI) wafer technology, CMOS process and micromachining techniques. The smart gas sensor features micro-heaters using p-type MOSFETs or polysilicon resistors and differentially transducing circuits for in situ temperature measurement. Physical models and 3D electro-thermo-mechanical simulations of the SOI micro-hotplate induced by Joule, self-heating, mechanic stress and piezoresistive effects are provided. The electro-thermal effect initiates and thus affects electronic and mechanical characteristics of the sensor devices at high temperatures. Experiments on variation and characterization of micro-heater resistance, power consumption, thermal imaging, deformation interferometry and dynamic thermal response of the SOI micro-hotplate have been presented and discussed. The full integration of the smart gas sensor with automatically temperature-reading ICs demonstrates the lowest power consumption of 57 mW at 300 °C and fast thermal response of 10 ms. © 2008 IOP Publishing Ltd.
Resumo:
In consecutive greenhouse studies, growth and propagule formation were examined first in monoecious hydrilla [Hydrilla verticillata (L.f.) Royle], then in dioecious hydrilla, at three temperature levels (25, 30, and 35 C) and contrasted over three periods of growth (8, 12 and 16 wks). Each biotype was grown under natural photoperiods, decreasing from 14 hrs (in Oct, Nov, and Dec). For both biotypes, total biomass and root-to-shoot ratios were significantly reduced at 35 C; greater biomass was produced both at 25 and 30C. Increases in growth period generally enhanced total biomass and shoot production; however, shoot length was unresponsive to growth periods beyond 8 wks. The 35C treatment strongly impeded tuber formation and eliminat4ed the production of axillary turions; the number and biomass of these propagules peaked at lower temperatures under short photoperiods after 12 to 16 wks. Shoot elongation was stimulated with increases in temperature and was especially pronounced in the dioecious biotype. Notably, in the monoecious biotype, the number of shoots as a potential source of fragments, and tuber production (although reduced) occurred at relatively high levels under unfavorably hihg-temperature (35C) conditions. These results suggest that monoecious hydrilla may be better adapted to high temperatures than previously shown, and that the distribution of both biotypes in the U.S. could overlap further in southern states.
Resumo:
The feasibility of using AlGaInAs lasers for high-speed modulation at high temperatures was evaluated and compared with performance of GaInAsP devices. Both drift-diffusion and rate equation simulation were involved so that the temperature dependence of material parameters was found in terms of overall dynamic performance. Differential gain was estimated by means of drift-diffusion simulations.
Resumo:
For more than 20 years researchers have been interested in developing micro-gas sensors based on silicon technology. Most of the reported devices are based on micro-hotplates, however they use materials that are not CMOS compatible, and therefore are not suitable for large volume manufacturing. Furthermore, they do not allow the circuitry to be integrated on to the chip. CMOS compatible devices have been previously reported. However, these use polysilicon as the heater material, which has long term stability problems at high temperatures. Here we present low power, low cost SOI CMOS NO2 sensors, based on high stability single crystal silicon P+ micro-heaters platforms, capable of measuring gas concentrations down to 0.1 ppm. We have integrated a thin tungsten molybdenum oxide layer as a sensing material with a foundry-standard SOI CMOS micro-hotplate and tested this to NO2. We believe these devices have the potential for use as robust, very low power consumption, low cost gas sensors. © 2011 American Institute of Physics.
Resumo:
Chemical looping combustion (CLC) is a novel combustion technology that involves cyclic reduction and oxidation of oxygen storage materials to provide oxygen for the combustion of fuels to CO2 and H2O, whilst giving a pure stream of CO2 suitable for sequestration or utilisation. Here, we report a method for preparing of oxygen storage materials from layered double hydroxides (LDHs) precursors and demonstrate their applications in the CLC process. The LDHs precursor enables homogeneous mixing of elements at the molecular level, giving a high degree of dispersion and high-loading of active metal oxide in the support after calcination. Using a Cu-Al LDH precursor as a prototype, we demonstrate that rational design of oxygen storage materials by material chemistry significantly improved the reactivity and stability in the high temperature redox cycles. We discovered that the presence of sodium-containing species were effective in inhibiting the formation of copper aluminates (CuAl2O4 or CuAlO 2) and stabilising the copper phase in an amorphous support over multiple redox cycles. A representative nanostructured Cu-based oxygen storage material derived from the LDH precursor showed stable gaseous O2 release capacity (∼5 wt%), stable oxygen storage capacity (∼12 wt%), and stable reaction rates during reversible phase changes between CuO-Cu 2O-Cu at high temperatures (800-1000 °C). We anticipate that the strategy can be extended to manufacture a variety of metal oxide composites for applications in novel high temperature looping cycles for clean energy production and CO2 capture. © The Royal Society of Chemistry 2013.
Resumo:
The efficiency of the injection and recombination processes in InGaN/GaN LEDs is governed by the properties of the active region of the devices, which strongly depend on the conditions used for the growth of the epitaxial material. To improve device quality, it is very important to understand how the high temperatures used during the growth process can modify the quality of the epitaxial material. With this paper we present a study of the modifications in the properties of InGaN/GaN LED structures induced by high temperature annealing: thermal stress tests were carried out at 900 °C, in nitrogen atmosphere, on selected samples. The efficiency and the recombination dynamics were evaluated by photoluminescence measurements (both integrated and time-resolved), while the properties of the epitaxial material were studied by Secondary Ion Mass Spectroscopy (SIMS) and Rutherford Backscattering (RBS) channeling measurements. Results indicate that exposure to high temperatures may lead to: (i) a significant increase in the photoluminescence efficiency of the devices; (ii) a decrease in the parasitic emission bands located between 380 nm and 400 nm; (iii) an increase in carrier lifetime, as detected by time-resolved photoluminescence measurements. The increase in device efficiency is tentatively ascribed to an improvement in the crystallographic quality of the samples. © 2013 SPIE.
Resumo:
A high-power AlGaInP laser diode with current-injection-free region near the facet is successfully fabricated by metaorganic chemical vapor deposition (MOCVD) using the (100) direction n-GaAs substrates with a misorientation of 15 deg toward the (011) direction. The maximum continuous wave output power is about 90 mW for the traditional structure. In comparison, the maximum output power is enhanced by about 67%, and achieves 150 mW for LDs with current-infection-free regions. The fundamental transverse-mode operation is obtained up to 70 mW. Output characteristics at high temperatures are also improved greatly for an LD with a current-injection-free region, and the highest operation temperature is 70 C at 50 mW without kink. The threshold current is about 33 mA, the operation current and the slope efficiency at 100 mW are 120 mA and 0.9 mW/mA, respectively. The lasing wavelength is 658.4 nm at room-temperature 50 mW. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
An investigation of a commercial oxide dispersion-strengthened steel (MA9561) irradiated with high energy Ne-ions to high doses at elevated temperatures is presented. Specimens of MA956 oxide dispersion strengthened steel together with a 9% Cr ferritic/martensitic steel, e.g., Grade 92 steel were irradiated simultaneously with 20Ne-ions (with 122 MeV) to successively increasing damage levels of 1, 5 and 10 dpa at the damage peak at 440 C and 570 C, respectively. Cross-sectional microstructures of the specimens were investigated with transmission electron microscopy. MA956 oxide dispersion strengthened steel showed a higher resistance to void swelling especially to void growth at the grain boundaries than the ferritic/martensitic steel, e.g., Grade 92 steel did, and thus exhibited a prominence for an application in the situation of a high He production at high temperatures. The suppression of the growth of voids especially at the grain boundaries in MA956 is ascribed to an enhanced recombination of the point defects and a trapping of Ne atoms at the interfaces of the yttrium–aluminum oxide particles and the matrix.