198 resultados para HEMICELLULOSIC HYDROLYSATE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The release of xylose reductase (XR) from Candida mogii by cell disruption in a glass beads mill was studied using an experimental design. Statistical analysis of the results indicated that XR volumetric activity increases by using lower glass beads diameter and cell concentration, and by increasing the number of agitation pulses. Based on results attained in experimental design, assays were carried out aiming at the maximization of XR release. Under optimized conditions (300 mu m glass beads, 45 g/l of cell concentration and 50 pulses), the XR volumetric activity reach 0.683 U/ml. Disruption with glass beads showed to be the most efficient method for XR release when compared to sonication process. The highest specific activity (0.175 U/mg of protein) was found in extracts obtained by suspension freezing and thawing, which suggests that this method can be used as a selective process of cell disruption for XR release. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nyvlt method Was used to determine the kinetic parameters of commercial xylitol in ethanol:water (50:50 %w/w) Solution by batch cooling crystallization. The kinetic exponents (n, g and in) and the system kinetic constant (B(N)) were determined. Model experiments were carried Out in order to verify the combined effects of saturation temperatures (40, 50 and 60 degrees C) and cooling rates (0.10, 0.25 and 0.50 degrees C/min) on these parameters. The fitting between experimental and Calculated crystal sizes has 11.30% mean deviation. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cellulose pulp obtained by chemical pre-treatment of brewer`s spent grain was saccharified by a commercial cellulase preparation and the produced hydrolysate (50 g/l glucose) was fermented to lactic acid by Lactobacillus delbrueckii. The effects of pH control and nutrient supplementation of the hydrolysate on fermentation performance were investigated. Addition of 5g/l yeast extract enhanced the lactic acid volumetric productivity that attained 0.53 g/l h, value 18% higher than that obtained from non-supplemented hydrolysate. Addition of the MRS broth medium components (except the carbon source) was still better, providing a productivity of 0.79 g/l h. In all the cases, the lactic acid yield factor was of 0.7 g/g glucose consumed, but the fermentations stopped after 24 h due to the pH drop from 6.0 to 4.2, resulting in large amounts of residual glucose (38-41 g/l). Fermentation runs pH-controlled at 6.0 gave better results than those where the initial pH was not further controlled. The best result, 35.54 g/l lactic acid (0.99 g/g glucose consumed) was obtained during the pH-controlled fermentation of hydrolysate medium supplemented with MRS components. The volumetric productivity at the end of this fermentation was 0.59 g/l h, with a maximum of 0.82 g/l h during the first 12 h. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fluidized bed reactor has successfully been used to perform biotechnological processes addressed to the production of high added value. The present work evaluates hydrodynamic parameters of a bench-scale fluidized bed reactor with cells of the yeast Candida guilliermondii immobilized either in calcium alginate beads or in polyvinyl alcohol (PVA). The effects of the following variables on cell immobilization were evaluated at 30 degrees C and feeding a synthetic medium containing 50 g L-1 xylose: total particle density (cells plus support), terminal velocity, particle drag force, minimum fluidization velocity and bed porosity. According to the results obtained, the reactor was shown to operate like a fixed-bed bioreactor at xi < 0.5 and a fluidized bed bioreactor at xi > 0.5. The maximum flow rate needed to obtain maximum bed fluidization in the reactor was equal to the terminal velocity of the immobilized cell particles. Particles of cells immobilized within these supports showed values of drag coefficient lower than those reported for other high-density supports. The evaluation of these hydrodynamic characteristics lead to an adequate bed fluidization inside the reactor, thus improving oxygen transference and availability in the fermentation medium, making the process more viable for future scale-up. (c) 2008 Society of Chemical Industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of alkaline treatments of the wheat straw with sodium hydroxide were investigated. The optimal condition for extraction of hemicelluloses was found to be with 0.50 mol/l sodium hydroxide at 55C for 2 h. This resulted in the release of 17.3% of hemicellulose (% dry starting material), corresponding to the dissolution of 49.3% of the original hemicellulose. The yields were determined by gravimetric analysis and expressed as a proportion of the starting material. Chemical composition and physico-chemical properties of the samples of hemicelluloses were elucidated by a combination of sugar analyses, Fourier transform infrared (FTIR), and thermal analysis. The results showed that the treatments were very effective on the extraction of hemicelluloses from wheat straw and that the extraction intensity (expressed in terms of alkali concentration) had a great influence on the yield and chemical features of the hemicelluloses. The FTIR analysis revealed typical signal pattern for the hemicellulosic fraction in the 1,200-1,000 cm(-1) region. Bands between 1,166 and 1,000 cm(-1) are typical of xylans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ethanol production by Pichia stipitis was evaluated in a stirred tank bioreactor using semi-defined medium containing xylose (90.0 g/l) as the main carbon source. Experimental assays were performed according to a 2(2) full factorial design to evaluate the influence of aeration (0.25 to 0.75 vvm) and agitation (150 to 250 rpm) conditions on ethanol production. In the studied range of values, the agitation increase and aeration decrease favored ethanol production, which was maximum (26.7 g/l) using 250 rpm and 0.25 vvm, conditions that gave a volumetric oxygen transfer coefficient (k(L)a value) of 4.9 h(-1). Under these conditions, the ethanol yield factor, ethanol productivity, and the process efficiency were 0.32 g/g, 0.32 g/l.h, and 63%, respectively. These results are promising and contribute to the development of a suitable process for ethanol production from xylose by Pichia stipitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xylitol enzymatic production can be an alternative to chemical and microbial processes, because of advantages like higher conversion efficiency. However, for an adequate conversion, it is necessary to investigate the effect of many parameters, such as buffer initial concentration, pH, temperature, agitation, etc. In this context, the objective of this work was to evaluate xylitol enzymatic production under different Tris buffer initial concentrations in order to determine the best condition for this parameter to begin the reaction. The best results were obtained when Tris buffer initial concentration was 0.22 M, reaching 0.31 g L(-1) h(-1) xylitol volumetric productivity with 99% xylose-xylitol conversion efficiency. Although the increase in buffer concentration allowed better pH maintenance, it hindered the catalysis. The results demonstrate that this bioreaction is greatly influenced by involved ions concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High yields of hemicellulosic and cellulosic sugars are critical in obtaining economical conversion of agricultural residues to ethanol. To optimize pretreatment conditions, we evaluated oxalic acid loading rates, treatment temperatures and times in a 2(3) full factorial design. Response-surface analysis revealed an optimal oxalic acid pretreatment condition to release sugar from the cob of Zea mays L ssp. and for Pichia stipitis CBS 6054. To ferment the residual cellulosic sugars to ethanol following enzymatic hydrolysis, highest saccharification and fermentation yields were obtained following pretreatment at 180 degrees C for 50 min with 0.024 g oxalic acid/g substrate. Under these conditions, only 7.5% hemicellulose remained in the pretreated substrate. The rate of cellulose degradation was significantly less than that of hemicellulose and its hydrolysis was not as extensive. Subsequent enzymatic saccharification of the residual cellulose was strongly affected by the pretreatment condition with cellulose hydrolysis ranging between 26.0% and 76.2%. The residual xylan/lignin ratio ranged from 0.31 to 1.85 depending on the pretreatment condition. Fermentable sugar and ethanol were maximal at the lowest ratio of xylan/lignin and at high glucan contents. The model predicts optimal condition of oxalic acid pretreatment at 168 degrees C, 74 min and 0.027 g/g of oxalic acid. From these findings, we surmised that low residual xylan was critical in obtaining maximal glucose yields from saccharification. Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The combined effects of vanillin and syringaldehyde on xylitol production by Candida guilliermondii using response surface methodology (RSM) have been studied. A 2(2) full-factorial central composite design was employed for experimental design and analysis of the results. RESULTS: Maximum xylitol productivities (Q(p) = 0.74 g L(-1) h(-1)) and yields (Y(P/S) = 0.81 g g(-1)) can be attained by adding only vanillin at 2.0 g L(-1) to the fermentation medium. These data were closely correlated with the experimental results obtained (0.69 +/- 0.04 g L(-1) h(-1) and 0.77 +/- 0.01 g g(-1)) indicating a good agreement with the predicted value. C. guilliermondii was able to convert vanillin completely after 24 h of fermentation with 94% yield of vanillyl alcohol. CONCLUSIONS: The bioconversion of xylose into xylitol by C. guilliermondii is strongly dependent on the combination of aldehydes and phenolics in the fermentation medium. Vanillin is a source of phenolic compound able to improve xylitol production by yeast. The conversion of vanillin to alcohol vanilyl reveals the potential of this yeast for medium detoxification. (C) 2009 Society of Chemical Industry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to correlate the efficiency of enzymatic hydrolysis of the cellulose contained in a sugarcane bagasse sample pretreated with dilute H(2)SO(4) with the levels of independent variables such as initial content of solids and loadings of enzymes and surfactant (Tween 20), for two cellulolytic commercial preparations. The preparations, designated cellulase I and cellulase II, were characterized regarding the activities of total cellulases, endoglucanase, cellobiohydrolase, cellobiase, beta-glucosidase, xylanase, and phenoloxidases (laccase, manganese and lignin peroxidases), as well as protein contents. Both extracts showed complete cellulolytic complexes and considerable activities of xylanases, without activities of phenoloxidases. For the enzymatic hydrolyses, two 2(3) central composite full factorial designs were employed to evaluate the effects caused by the initial content of solids (1.19-4.81%, w/w) and loadings of enzymes (1.9-38.1 FPU/g bagasse) and Tween 20 (0.0-0.1 g/g bagasse) on the cellulose digestibility. Within 24 h of enzymatic hydrolysis, all three independent variables influenced the conversion of cellulose by cellulase I. Using cellulase II, only enzyme and surfactant loadings showed significant effects on cellulose conversion. An additional experiment demonstrated the possibility of increasing the initial content of solids to values much higher than 4.81% (w/w) without compromising the efficiency of cellulose conversion, consequently improving the glucose concentration in the hydrolysate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tropical countries, such as Brazil and Colombia, have the possibility of using agricultural lands for growing biomass to produce bio-fuels such as biodiesel and ethanol. This study applies an energy analysis to the production process of anhydrous ethanol obtained from the hydrolysis of starch and cellulosic and hemicellulosic material present in the banana fruit and its residual biomass. Four different production routes were analyzed: acid hydrolysis of amylaceous material (banana pulp and banana fruit) and enzymatic hydrolysis of lignocellulosic material (flower stalk and banana skin). The analysis considered banana plant cultivation, feedstock transport, hydrolysis, fermentation, distillation, dehydration, residue treatment and utility plant. The best indexes were obtained for amylaceous material for which mass performance varied from 346.5 L/t to 388.7 L/t, Net Energy Value (NEV) ranged from 9.86 MJ/L to 9.94 MJ/L and the energy ratio was 1.9 MJ/MJ. For lignocellulosic materials, the figures were less favorable: mass performance varied from 86.1 to 123.5 L/t, NEV from 5.24 10 8.79 MJ/L and energy ratio from 1.3 to 1.6 MJ/MJ. The analysis showed, however, that both processes can be considered energetically feasible. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purified beta-glucosidase of Aureobasidium pullulans ER-16 is one of more thermostable enzyme reported to date. Considering the unfeasibility of using purified enzyme for industrial application, it was interesting to analyze this property for the crude enzyme. Thermophilic fungus Thermoascus aurantiacus CBMAI-756 and mesophilic A. pullulans ER-16 were cultivated in different hemicellulosic materials on solid-state cultivation for beta-glucosidase production. Wheat bran was most appropriate for beta-glucosidase production by both microorganisms. T. aurantiacus exhibited maximum enzyme production (7.0 U/ml or 70 U/g) at 48-72 h and A. pullulans a maximum (1.3 U/ml or 13 U/g) at 120 h. Maximum activities were at 75 degrees C with optimum pH at 4.5 and 4.0, for T aurantiacus and A. pullulans, respectively. A. pullulans`s beta-glucosidase was more pH stable (4.5-10.0 against 4.5-8.0) and more thermostable (90% after 1 h at 75 degrees C against 85% after 1 h at 70 degrees C) than the enzyme from the thermophilic T. aurantiacus. The t((1/2)) at 80 degrees C were 50 and 12.5 min for A. pullulans and T. aurantiascus, respectively. These data confirm the high thermostability of crude beta-glucosidase from A. pullulans. Both beta-glucosidases were strongly inhibited by glucose, but ethanol significantly increased the activity of the enzyme from T. aurantiacus. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A search for new antiparasitic agents from a strain of the fungus Aspergillus carneus isolated from an estuarine sediment collected in Tasmania, Australia, yielded the known terrestrial fungal metabolite marcfortine A ( 1) as an exceptionally potent antiparasitic agent. This study also yielded a series of new depsipeptides, aspergillicins A - E ( 2 - 6) and the known terrestrial fungal metabolite acyl aszonalenin ( 7). Marcfortine A ( 1) and acyl aszonalenin ( 7) were identified by spectroscopic analysis, with comparison to literature data. Complete stereostructures were assigned to aspergillicins A - E ( 2 - 6) on the basis of detailed spectroscopic analysis, together with ESIMS analysis of the free amino acids generated by acid hydrolysis, and HPLC analysis of Marfey derivatives prepared from the acid hydrolysate. The peptide amino acid sequence for all aspergillicins was unambiguously assigned by MSn ion-trap ESI mass spectrometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Diet seems to represent, directly or indirectly, 35% of all cancer reports. In this study, the influence of dietary protein on the growth of melanoma B16F10 was evaluated through analyses of cell cycle phases and proliferative capacity. Methods Flow cytometry and argyrophilic nucleolar organizer regions (AgNORs) technique were applied in mice bearing B16F10 melanoma cells fed on different dietary proteins. All data were submitted to statistical analyses. Results The G0/G1 phase increased for the animal groups fed bovine collagen hydrolysate (BCH) or BCH-P1 + whey protein isolate (WPI), compared with mice receiving only WPI, for all dietary groups treated and nontreated with paclitaxel. Mice that received BCH + WPI treated with paclitaxel showed the highest percentage of apoptosis compared with WPI group. AgNORs, total nucleolar organizer regions (NORs)/cells and dot number/cell for all dietary protein groups nontreated with paclitaxel were higher than for the WPI. The only two dietary protein groups treated with paclitaxel that presented higher total NORs and dot number/cell than the WPI group were BCH + WPI and BCH-P1 + WPI. Conclusions A significantly lower proliferative capacity and larger number of cells in the G0/G1 phase were observed for the dietary protein groups combining the two collagen hydrolysates, BCH or BCH-P1 with WPI, treated with paclitaxel. Castro GA, Maria DA, Rodrigues CJ, Sgarbieri VC. Analysis of cell cycle phases and proliferative capacity in mice bearing melanoma maintained on different dietary proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A successful embryo-rescue and culture protocol was developed for use with several indigenous Vigna species and mungbean cultivars grown in Australia. Germination of Vigna immature embryos and their subsequent development into plants was influenced by the time at which the embryos were isolated and by which medium additives were placed in the embryo-rescue medium. A medium containing MS basal nutrients with sucrose (88 mM), casein hydrolysate (500 mg L-1) and agar (8 g L-1) but devoid of plant-growth regulators was found to be the best for germination of immature embryos for all four Vigna species investigated. The protocol for successful germination of non-hybrid immature embryos was applied to the recovery of interspecific hybrids involving mungbean and five native Vigna species that had previously been found difficult to hybridise. Several putative hybrid plants were obtained including a confirmed interspecific cross between V. luteola (Jacq.) Benth and V. marina (Burm.) Merrill.