967 resultados para Growth mechanism


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tungsten oxide microtubules, arrayed in a radial flower-like structure, were synthesized by simply using W powders reacting with Ni(NO3)(2) center dot 6H(2)O at a elevated temperature. The formed microtubules, with lengths more than 100 pin and outer diameters of 1-5 mu m, have irregular open ends, showing clear grooves along the growth direction on the tubule surface. A novel aggregation mechanism based on chemical-vapor-deposit process was proposed to describe the growth process of the synthesized tubules, and the possible mechanism for the arrangement of the radial flower-like morphology was discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the growth of GaAs nanowires on the {111}B GaAs substrate, truncated triangular GaAs nanowires were commonly observed in the bottom region of nanowires. Through detailed structural analysis by electron microscopy, we have determined the growth mechanism of truncated triangular GaAs nanowires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porous layers can be formed electrochemically on (100) oriented n-InP substrates in aqueous KOH. A nanoporous layer is obtained underneath a dense near-surface layer and the pores appear to propagate from holes through the near-surface layer. In the early stages of the anodization transmission electron microscopy (TEM) clearly shows individual porous domains that appear to have a square-based pyramidal shape. Each domain appears to develop from an individual surface pit which forms a channel through this near-surface layer. We suggest that the pyramidal structure arises as a result of preferential pore propagation along the <100> directions. AFM measurements show that the density of surface pits increases with time. Each of these pits acts as a source for a pyramidal porous domain. When the domains grow, the current density increases correspondingly. Eventually the domains meet, forming a continuous porous layer, the interface between the porous and bulk InP becomes relatively flat and its total effective surface area decreases resulting in a decrease in the current density. Current-time curves at constant potential exhibit a peak and porous layers are observed to form beneath the electrode surface. The density of pits formed on the surface increases with time and approaches a plateau value. Porous layers are also observed in highly doped InP but are not observed in wafers with doping densities below ~5 × 1017 cm-3. Numerical models of this process have been developed invoking a mechanism of directional selectivity of pore growth preferentially along the <100> lattice directions. Manipulation of the parameters controlling these curves shows that the fall-off in current is controlled by the rate of diffusion of electrolyte through the pore structure with the final decline in current being caused by the termination of growth at the pore tips through the formation of passivating films or some other irreversible modification of the pore tips.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A twin-plane based nanowire growth mechanism is established using Au catalyzed Ge nanowire growth as a model system. Video-rate lattice-resolved environmental transmission electron microscopy shows a convex, V-shaped liquid catalyst-nanowire growth interface for a ⟨112⟩ growth direction that is composed of two Ge {111} planes that meet at a twin boundary. Unlike bulk crystals, the nanowire geometry allows steady-state growth with a single twin boundary at the nanowire center. We suggest that the nucleation barrier at the twin-plane re-entrant groove is effectively reduced by the line energy, and hence the twin acts as a preferential nucleation site that dictates the lateral step flow cycle which constitutes nanowire growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High quality silicon nanowires (SiNWs) were grown directly from n-(111) silicon single crystal substrate by using Au film as a metallic catalyst. The diameter and length of the formed nanowires are 30-60 nm and from several micrometers to sereral tens of micrometers, respectively. The effects of Au film thickness, annealing temperature, growth time and N-2 gas flow rate on the formation of the nanowires were experimentally investigated. The results confirmed that the silicon nanowires with controlled diameter, length, shape and orientation can be obtained via reasonably choosing and optimizing various technical conditions. The formation process of the silicon nanowires is analyzed qualitatively based on solid-liquid-solid growth mechanism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cobalt nanotubes (CoNTs) with very high longitudinal coercivity were prepared by electrodeposition of cobalt acetate for the first time by using anodized alumina (AAO) template. They were then characterized with X-ray diffraction (XRD), a field emission scanning electron microscope (FESEM), and a transmission electron microscope (TEM). Formation of a highly ordered hexagonal cobalt phase is observed. Room temperature SQUID (superconducting quantum interference device) magnetometer measurements indicate that the easy axis of magnetization is parallel to the nanotube axis. These CoNTs exhibit very high longitudinal coercivity of ∼820 Oe. A very high intertubular interaction resulting from magnetostatic dipolar interaction between nanotubes is observed. Thick-walled nanotubes were also fabricated by using cobalt acetate tetrahydrate precursors. A plausible mechanism for the formation of CoNTs based on mobility assisted growth is proposed. The role of the hydration layer and the mobility of metal ions are elucidated in the case of the growth mechanism of one-dimensional geometry

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The electrodeposition of silver from two ionic liquids, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) and N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ([C4mPyr][TFSI]), and an aqueous KNO3 solution on a glassy carbon electrode was undertaken. It was found by cyclic voltammetry that the electrodeposition of silver proceeds through nucleation–growth kinetics. Analysis of chronoamperometric data indicated that the nucleation–growth mechanism is instantaneous at all potentials in the case of [BMIm][BF4] and [C4mPyr][TFSI], and instantaneous at low overpotentials tending to progressive at high overpotentials for KNO3. Significantly, under ambient conditions, the silver electrodeposition mechanism changes to progressive nucleation and growth in [C4mPyr][TFSI], which is attributed to the uptake of atmospheric water in the IL. It was found that these differences in the growth mechanism impact significantly on the morphology of the resultant electrodeposit which is characterised ex situ by scanning electron microscopy and X-ray diffraction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Controlled self-organized growth of vertically aligned carbon nanocone arrays in a radio frequency inductively coupled plasma-based process is studied. The experiments have demonstrated that the gaps between the nanocones, density of the nanocone array, and the shape of the nanocones can be effectively controlled by the process parameters such as gas composition (hydrogen content) and electrical bias applied to the substrate. Optical measurements have demonstrated lower reflectance of the nanocone array as compared with a bare Si wafer, thus evidencing their potential for the use in optical devices. The nanocone formation mechanism is explained in terms of redistribution of surface and volumetric fluxes of plasma-generated species in a developing nanocone array and passivation of carbon in narrow gaps where the access of plasma ions is hindered. Extensive numerical simulations were used to support the proposed growth mechanism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This article reports on the lowerature inductively coupled plasma-enabled synthesis of ultralong (up to several millimeters in length) SiO2 nanowires, which were otherwise impossible to synthesize without the presence of a plasma. Depending on the process conditions, the nanowires feature straight, helical, or branched morphologies. The nanowires are amorphous, with a near-stoichiometric elemental composition ([O] / [Si] =2.09) and are very uniform throughout their length. The role of the ionized gas environment is discussed and the growth mechanism is proposed. These nanowires are particularly promising for nanophotonic applications where long-distance and channelled light transmission and polarization control are required.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sputtering and subsequent sulfurization(orselenization)is one of the methods that have been extensively employed to fabricate Cu2ZnSn(S,Se)4 (CZTSSe) thin films. However, there are limited reports on the effect of precursor stacking order of the sputtered source materials on the properties of the synthesized CZTSSe films. In this work,the morphology and crystallization process of the CZTSSe films which were prepared by selenizing Cu–ZnS–SnS precursor layers with different stacking sequences and the adhesion property between the as-synthesized CZTSSe layer and Mosubstrate have been thoroughly investigated. It has been found that the growth of CZTSSe material and the morphology of the film strongly depend on the location of Culayer in the precursor film. The formation of CZTSSe starts from the diffusion of Cu–Se to Sn(S,Se)layert o form Cu–Sn–(S,Se) compound,followed by the reaction with Zn(S,Se). The investigation of themorphology of the CZTSSe films has shown that large grains are formed in the film with the precursor stacking order of Mo/SnS/ZnS/Cu,which is attributed to a bottom-to-top growth mechanism. In contrast, the film made from a precursor with a stacking sequence of Mo/ZnS/ SnS/Cu is mainly consisted of small grains due to a top-to-bottom growth mechanism. The best CZTSSe solar cell with energy conversion efficiency of3.35%has been achieved with the selenized Mo/ZnS/ SnS/Cu film, which is attributed to a good contact between the absorber layer and the Mosubstrate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We followed by X-ray Photoelectron Spectroscopy (XPS) the time evolution of graphene layers obtained by annealing 3C SiC(111)/Si(111) crystals at different temperatures. The intensity of the carbon signal provides a quantification of the graphene thickness as a function of the annealing time, which follows a power law with exponent 0.5. We show that a kinetic model, based on a bottom-up growth mechanism, provides a full explanation to the evolution of the graphene thickness as a function of time, allowing to calculate the effective activation energy of the process and the energy barriers, in excellent agreement with previous theoretical results. Our study provides a complete and exhaustive picture of Si diffusion into the SiC matrix, establishing the conditions for a perfect control of the graphene growth by Si sublimation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The kinetics of the polymorphic transformation in antimony trioxide from metastable orthorhombic valentinite to cubic senarmontite has been studied in polycrystalline material between 490 and 530°C. Quantitative analysis of the mixtures was done using infrared spectrophotometry. The kinetic data was analyzed and the activation energy for the process was obtained: (i) On the basis of Avrami's equation, which is derived on the basis of a nucleation and growth mechanism; and (ii) from the time required for a constant fraction of the transformation to take place. The values obtained were 50.8 and 46.0 kcal/mole. Observations have also been made on partly transformed single crystals of valentinite using a polarizing microscope. The latter studies and the value of the activation energy suggest that a better understanding of the transformation could be obtained on the basis of a vapor phase mechanism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Zinc micro and nanostructures were synthesized in vacuum by condensing evaporated zinc on Si substrate at different gas pressures. The morphology of the grown Zn structures was found to be dependent on the oxygen partial pressure. Depending on oxygen partial pressure it varied from two-dimensional microdisks to one-dimensional nanowire. The morphology and structural properties of the grown micro and nanostructures were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Transmission electron microscopy (TEM) studies on the grown Zn nanowires have shown that they exhibit core/shell-like structures, where a thin ZnO layer forms the shell. A possible growth mechanism behind the formation of different micro and nanostructures has been proposed. In addition, we have synthesized ZnO nanocanal-like structures by annealing Zn nanowires in vacuum at 350 °C for 30 min.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report the study of complex and unexpected dependencies of nanocrystal size as well as nanocrystalsize distribution on various reaction parameters in the synthesis of ZnO nanocrystals using poly(vinyl pyrollidone) (PVP) as a capping agent. This method establishes a qualitatively different growth mechanism to the anticipated Ostwald ripening behavior. The study of size-distribution kinetics and an understanding of the observed non-monotonic behaviors provides a route to rational synthesis. We used a simple, but accurate, approach to estimate the size-distribution function of nanocrystals from the UV-absorption spectrum. Our results demonstrate the accuracy and generality of this approach, and we also illustrate its application to various semiconducting nanocrystals, such as ZnO, ZnS, and CdSe, over a wide size range (1.8-5.3 nm).