940 resultados para Gromov-Hausdorff limit
Resumo:
A method is presented for obtaining lower bound on the carrying capacity of reinforced concrete foundation slab-structures subject to non-uniform contact pressure distributions. Functional approach suggested by Vallance for simply supported square slabs subject to uniform pressure distribution has been extended to simply supported rectangular slabs subject to symmetrical non-uniform pressure distributions. Radial solutions, ideally suited for rotationally symmetric problems, are shown to be adoptable for regular polygonal slabs subject to contact pressure paraboloids with constant edge pressures. The functional approach has been shown to be well suited even when the pressure is varying along the edges.
Resumo:
Using square yield criterion and the associated flow rule, complete limit analysis solutions are presented for the collapse load of annular slabs with inner and outer edges either simply supported or clamped. For the simply supported case, a comparison is made with a previously published solution employing Tresca's yield criterion and its associated flow rules. That the collapse load obtained from a complete solution is in fact very close to that obtained from a solution which is only kinematically admissible is demonstrated in the clamped case.
Resumo:
The possible mechanisms of particle aggregation and reduction in liquid limit of the Cochin marine clay on drying are investigated. Mineralogical analysis showed the absence of halloysite in the marine specimen. Experimental results also ruled out the possibility of cementitious material being responsible for particle aggregation and reduction in clay plasticity on drying. The presence of calcium and magnesium as the predominant exchangeable ions and of a high pore salt concentration facilitates strong interparticle attraction and small particle separations; the latter leads to development of significant capillary stresses that permits an intimate contact of particles and growth of strong van der Waals' and Coulombic bonds.
Resumo:
The general method earlier developed by the writers for obtaining valid lower bound solutions to slabs under uniformly distributed load and supported along all edges is extended to the slabs with a free edge. Lower bound solutions with normal moment criterion are presented for six cases of orthotropically reinforced slabs, with one of the short edges being free and the other three edges being any combination of fixed and simply supported conditions. The expressions for moment field and collapse load are given for each slab. The lower bounds have been compared with the corresponding upper bound values obtained from the yield line theory with simple straight yield line modes of failure. They are also compared with Nielsen’s solutions available for two cases with isotropic reinforcement.
Resumo:
The ultimate bearing capacity of a number of multiple strip footings, identically spaced and equally loaded to failure at the same time,is computed by using the lower bound limit analysis in combination with finite elements. The efficiency factor due to the component of soil unit weight, is computed with respect to changes in the clear spacing (xi(gamma)) between the footings. It is noted that the failure load for a footing in the group becomes always greater than that of a single isolated footing. The values of xi(gamma) for the smooth footings are found to be always lower than the rough footings. The values ofxi(gamma) are found to increase continuously with a decrease in the spacing between footings. As compared to the available theoretical and experimental results reported in literature, the present analysis provides generally a little lower values of xi(gamma). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper elucidates the relative importance of soil structure and various compositional factors in influencing the liquid limit of natural kaolinitic soils. Earlier studies dealt with purified systems and anticipated that the liquid limit of the soils would increase with percentage clay size fraction and surface area, and that soils with a greater degree of paricle flocculation would possess a higher liquid limit than soils with a more parallel particle arrangement. The results revealed that the inter-particle attraction and repulsion forces have a prominent role in determining the liquid limit of kaolinitic soils. These forces determine the particle arrangement (clay fabric) which in turn regulates the liquid limit values. The influence of clay fabric was ascertained from the relationships of liquid limit with shrinkage limit and sediment volume (in water) values. It was anticipated that kaolinitic soils with a greater degree of particle flocculatin and a higher liquid limit would shrink less and occupy a higher sedimentation volume. As expected an increase in liquid limit was accompanied by an increase in shrinkage limit and sediment volume in water.
Resumo:
Starting from the exact general relativistic expression for the total energy of selfgravitating spherically distributed matter and using the minimum energy priciple, we calculate the upper mass limit for a neutron star to be 3.1 solar masses.
Resumo:
In this paper, we focus on the performance of a nanowire field-effect transistor in the ultimate quantum capacitance limit (UQCL) (where only one subband is occupied) in the presence of interface traps (D-it), parasitic capacitance (C-L), and source/drain series resistance (R-s,R-d), using a ballistic transport model and compare the performance with its classical capacitance limit (CCL) counterpart. We discuss four different aspects relevant to the present scenario, namely: 1) gate capacitance; 2) drain-current saturation; 3) subthreshold slope; and 4) scaling performance. To gain physical insights into these effects, we also develop a set of semianalytical equations. The key observations are as follows: 1) A strongly energy-quantized nanowire shows nonmonotonic multiple-peak C-V characteristics due to discrete contributions from individual subbands; 2) the ballistic drain current saturates better in the UQCL than in the CCL, both in the presence and absence of D-it and R-s,R-d; 3) the subthreshold slope does not suffer any relative degradation in the UQCL compared to the CCL, even with Dit and R-s,R-d; 4) the UQCL scaling outperforms the CCL in the ideal condition; and 5) the UQCL scaling is more immune to R-s,R-d, but the presence of D-it and C-L significantly degrades the scaling advantages in the UQCL.
Resumo:
The response of the Van der Pol oscillator to stationary narrowband Gaussian excitation is considered. The central frequency of excitation is taken to be in the neighborhood of the system limit cycle frequency. The solution is obtained using a non-Gaussian closure approximation on the probability density function of the response. The validity of the solution is examined with the help of a stochastic stability analysis. Solution based on Stratonovich''s quasistatic averaging technique is also obtained. The comparison of the theoretical solutions with the digital simulations shows that the theoretical estimates are reasonably good.
Resumo:
By using the lower bound limit analysis in conjunction with finite elements and linear programming, the bearing capacity factors due to cohesion, surcharge and unit weight, respectively, have been computed for a circular footing with different values of phi. The recent axisymmetric formulation proposed by the authors under phi = 0 condition, which is based on the concept that the magnitude of the hoop stress (sigma(theta)) remains closer to the least compressive normal stress (sigma(3)), is extended for a general c-phi soil. The computational results are found to compare quite well with the available numerical results from literature. It is expected that the study will be useful for solving various axisymmetric geotechnical stability problems. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
In this paper the question of the extent to which truncated heavy tailed random vectors, taking values in a Banach space, retain the characteristic features of heavy tailed random vectors, is answered from the point of view of the central limit theorem.