848 resultados para Graph-theoretical descriptors
Resumo:
An experimental study of the Polarization Dependent Loss (PDL) is performed in an Optical Recirculating Loop (RCL). The RCL enables to simulate the transmission through various optical links using just one optical fiber spool, one in line amplifier, some optical filters and devices in a low cost manner. The total amount of PDL in a Recirculating loop, due to its statistical nature, is different of the simple sum of each element of the recirculating loop because of the alignment variation of the PDL elements with time, depending on the environmental conditions such as fiber stress and temperature. In this paper theoretical studies are also performed using formalism of Jones and Mueller matrices in order to represent the different optical elements in the recirculating loop. The PDL must be correctly characterized in order to evaluate properly the impact on the performance of next generation DWDM systems. Theoretical and experimental results comparison shows that a depolarization of 7% occurs in the experimental setup, probably by the optical amplifier due to the depolarized nature of the amplified spontaneous emission.
Resumo:
The glued- laminated lumber (glulam) technique is an efficient process for the rational use of wood. Fiber-reinforced polymer (FRPs) associated with glulam beams provide significant improvements in strength and stiffness and alter the failure mode of these structural elements. In this context, this paper presents guidance for glulam beam production, an experimental analysis of glulam beams made of Pinus caribea var. hondurensis species without and with externally-bonded FRP and theoretical models to evaluate reinforced glulam beams (bending strength and stiffness). Concerning the bending strength of the beams, this paper aims only to analyze the limit state of ultimate strength in compression and tension. A specific disposal was used in order to avoid lateral buckling, once the tested beams have a higher ratio height-to-width. The results indicate the need of production control so as to guarantee a higher efficiency of the glulam beams. The FRP introduced in the tensile section of glulam beams resulted in improvements on their bending strength and stiffness due to the reinforcement thickness increase. During the beams testing, two failure stages were observed. The first was a tensile failure on the sheet positioned under the reinforcement layer, while the second occurred as a result of a preliminary compression yielding on the upper side of the lumber, followed by both a shear failure on the fiber-lumber interface and a tensile failure in wood. The model shows a good correlation between the experimental and estimated results.
Resumo:
Thermal action on timber causes it to degrade through combustion of its chemical components, which leads to the release of vapors, combustible gases and surface char. This diminishes its load capacity, due to the reduction of its cross section by charring and to changes in its mechanical properties of strength and stiffness as a function of its exposure to high temperatures. This paper reports the charring rates observed on Eucalyptus structural beams and presents a numerical and experimental study of the behavior of these beams when exposed to fire, in which the properties of strength and stiffness were evaluated as a function of rising temperatures, allowing an analysis of the effect of the section factor on the internal rise in temperature of structural Eucalyptus beams.
Resumo:
In this paper a bond graph methodology is used to model incompressible fluid flows with viscous and thermal effects. The distinctive characteristic of these flows is the role of pressure, which does not behave as a state variable but as a function that must act in such a way that the resulting velocity field has divergence zero. Velocity and entropy per unit volume are used as independent variables for a single-phase, single-component flow. Time-dependent nodal values and interpolation functions are introduced to represent the flow field, from which nodal vectors of velocity and entropy are defined as state variables. The system for momentum and continuity equations is coincident with the one obtained by using the Galerkin method for the weak formulation of the problem in finite elements. The integral incompressibility constraint is derived based on the integral conservation of mechanical energy. The weak formulation for thermal energy equation is modeled with true bond graph elements in terms of nodal vectors of temperature and entropy rates, resulting a Petrov-Galerkin method. The resulting bond graph shows the coupling between mechanical and thermal energy domains through the viscous dissipation term. All kind of boundary conditions are handled consistently and can be represented as generalized effort or flow sources. A procedure for causality assignment is derived for the resulting graph, satisfying the Second principle of Thermodynamics. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The metastable phase diagram of the BCC-based ordering equilibria in the Ti-Fe system has been calculated using a truncated cluster expansion, through the combination of FP-LAPW and cluster variation method (CVM) in the irregular tetrahedron cluster approximation. The results are compared with phenomenological CVM assessments of the system and suggest that the value for the experimental formation enthalpy of the B2-TiFe compound should be significantly more negative than the currently assessed value. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The theoretical and experimental open-circuit voltage optimizations of a simple fabrication process of silicon solar cells n(+)p with rear passivation are presented. The theoretical results were obtained by using an in-house developed program, including the light trapping effect and metal-grid optimization. On the other hand, the experimental steps were monitored by the photoconductive decay technique. The starting materials presented thickness of about 300 pm and resistivities: FZ (0.5 Omega cm), Cz-type 1 (2.5 Omega cm) and Cz-type 2 (3.3 Omega cm). The Gaussian profile emitters were optimized with sheet resistance between 55 Omega/sq and 100 Omega/sq, and approximately 2.0 mu m thickness in accordance to the theoretical results. Excellent implied open-circuit voltages of 670.8 mV, 652.5 mV and 662.6 mV, for FZ, Cz-type 1 and Cz-type 2 silicon wafers, respectively, could be associated to the measured lifetimes that represents solar cell efficiency up to 20% if a low cost anti-reflection coating system, composed by random pyramids and SiO(2) layer, is considered even for typical Cz silicon. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This letter addresses the optimization and complexity reduction of switch-reconfigured antennas. A new optimization technique based on graph models is investigated. This technique is used to minimize the redundancy in a reconfigurable antenna structure and reduce its complexity. A graph modeling rule for switch-reconfigured antennas is proposed, and examples are presented.
Resumo:
Experimental and theoretical studies on the magnetic field dependence of the electrical resistance R(B(a)) and the transport noise (TN) in polycrystalline high-T(c) superconductors subjected to different uniaxial compacting pressures were conducted. X-ray diffraction rocking curves were performed in different surfaces of the samples in order to investigated the degree of texture The results indicated an improvement of the degree of texture with increasing the uniaxial compacting pressure In theoretical simulations of the data, the polycrystalline superconductors were described as a series-parallel array of Josephson devices The intergranular magnetic field is described within the framework of the intragranular flux-trapping model and the distribution of the grain-boundary angles is assumed to follow the Rayleigh statistical function The proposed model describes well the experimental magnetoresistance R(B(a)) data We have found that the behavior of the R(B(a)) curves changes appreciably when different uniaxially compacting pressures are applied to the sample and such a changes are reproduced by the model when different grain-boundary angles distributions are used In addition, changes in the R(B(a)) dependence have their counterparts in the experimental transport noise signals (C) 2009 Elsevier B.V. All rights reserved
Resumo:
Objective:To investigate the effects of bilateral, surgically induced functional inhibition of the subthalamic nucleus (STN) on general language, high level linguistic abilities, and semantic processing skills in a group of patients with Parkinson’s disease. Methods:Comprehensive linguistic profiles were obtained up to one month before and three months after bilateral implantation of electrodes in the STN during active deep brain stimulation (DBS) in five subjects with Parkinson’s disease (mean age, 63.2 years). Equivalent linguistic profiles were generated over a three month period for a non-surgical control cohort of 16 subjects with Parkinson’s disease (NSPD) (mean age, 64.4 years). Education and disease duration were similar in the two groups. Initial assessment and three month follow up performance profiles were compared within subjects by paired t tests. Reliability change indices (RCI), representing clinically significant alterations in performance over time, were calculated for each of the assessment scores achieved by the five STN-DBS cases and the 16 NSPD controls, relative to performance variability within a group of 16 non-neurologically impaired adults (mean age, 61.9 years). Proportions of reliable change were then compared between the STN-DBS and NSPD groups. Results:Paired comparisons within the STN-DBS group showed prolonged postoperative semantic processing reaction times for a range of word types coded for meanings and meaning relatedness. Case by case analyses of reliable change across language assessments and groups revealed differences in proportions of change over time within the STN-DBS and NSPD groups in the domains of high level linguistics and semantic processing. Specifically, when compared with the NSPD group, the STN-DBS group showed a proportionally significant (p
Resumo:
Current debates about educational theory are concerned with the relationship between knowledge and power and thereby issues such as who possesses a truth and how have they arrived at it, what questions are important to ask, and how should they best be answered. As such, these debates revolve around questions of preferred, appropriate, and useful theoretical perspectives. This paper overviews the key theoretical perspectives that are currently used in physical education pedagogy research and considers how these inform the questions we ask and shapes the conduct of research. It also addresses what is contested with respect to these perspectives. The paper concludes with some cautions about allegiances to and use of theories in line with concerns for the applicability of educational research to pressing social issues.
Resumo:
Argumentation is modelled as a game where the payoffs are measured in terms of the probability that the claimed conclusion is, or is not, defeasibly provable, given a history of arguments that have actually been exchanged, and given the probability of the factual premises. The probability of a conclusion is calculated using a standard variant of Defeasible Logic, in combination with standard probability calculus. It is a new element of the present approach that the exchange of arguments is analysed with game theoretical tools, yielding a prescriptive and to some extent even predictive account of the actual course of play. A brief comparison with existing argument-based dialogue approaches confirms that such a prescriptive account of the actual argumentation has been almost lacking in the approaches proposed so far.
Resumo:
The minimal irreducible representations of U-q[gl(m|n)], i.e. those irreducible representations that are also irreducible under U-q[osp(m|n)] are investigated and shown to be affinizable to give irreducible representations of the twisted quantum affine superalgebra U-q[gl(m|n)((2))]. The U-q[osp(m|n)] invariant R-matrices corresponding to the tensor product of any two minimal representations are constructed, thus extending our twisted tensor product graph method to the supersymmetric case. These give new solutions to the spectral-dependent graded Yang-Baxter equation arising from U-q[gl(m|n)((2))], which exhibit novel features not previously seen in the untwisted or non-super cases.
Resumo:
MCM-41 materials of six different pore diameters were prepared and characterized using X-ray diffraction, transmission electron microscopy, helium pycnometry, small-angle neutron scattering, and gas adsorption (argon at 77.4 and 87.4 K, nitrogen and oxygen at 77.4 K, and carbon dioxide at 194.6 K). A recent molecular continuum model of the authors, previously used for adsorption of nitrogen at 77.4 K, was applied here for adsorption of argon, oxygen, and carbon dioxide. While model predictions of single-pore adsorption isotherms for argon and oxygen are in satisfactory agreement with experimental data, significant deviation was found for carbon dioxide, most likely due to its high quadrupole moment. Predictions of critical pore diameter, below which reversible condensation occurs: were possible by the model and found to be consistent with experimental estimates, for the adsorption of the various gases. On the other hand, existing models such as the Barrett-Joyner-Halenda (BJH), Saito-Foley, and Dubinin-Astakhov models were found to be inadequate, either predicting an incorrect pore diameter or not correlating the isotherms adequately. The wall structure of MCM-41 appears to be close to that of amorphous silica, as inferred from our skeletal density measurements.
Theoretical and numerical analyses of convective instability in porous media with upward throughflow
Resumo:
Exact analytical solutions have been obtained for a hydrothermal system consisting of a horizontal porous layer with upward throughflow. The boundary conditions considered are constant temperature, constant pressure at the top, and constant vertical temperature gradient, constant Darcy velocity at the bottom of the layer. After deriving the exact analytical solutions, we examine the stability of the solutions using linear stability theory and the Galerkin method. It has been found that the exact solutions for such a hydrothermal system become unstable when the Rayleigh number of the system is equal to or greater than the corresponding critical Rayleigh number. For small and moderate Peclet numbers (Pe less than or equal to 6), an increase in upward throughflow destabilizes the convective flow in the horizontal layer. To confirm these findings, the finite element method with the progressive asymptotic approach procedure is used to compute the convective cells in such a hydrothermal system. Copyright (C) 1999 John Wiley & Sons, Ltd.