960 resultados para Ghost reflection analysis
Resumo:
This paper investigates the major structural parameters, such as crystal quality and strain state of (001)-oriented GaN thin films grown on sapphire substrates by metalorganic chemical vapour deposition, using an in-plane grazing incidence x-ray diffraction technique. The results are analysed and compared with a complementary out-of-plane x-ray diffraction technique. The twist of the GaN mosaic structure is determined through the direct grazing incidence measurement of (100) reflection which agrees well with the result obtained by extrapolation method. The method for directly determining the in-plane lattice parameters of the GaN layers is also presented. Combined with the biaxial strain model, it derives the lattice parameters corresponding to fully relaxed GaN films. The GaN epilayers show an increasing residual compressive stress with increasing layer thickness when the two dimensional growth stage is established, reaching to a maximum level of -0.89 GPa.
Resumo:
A novel microcavity semiconductor optical amplifier ( MCSOA) was proposed by incorporating top and bottom distributed Bragg reflectors ( DBRs) into the waveguide structure of conventional traveling-wave semiconductor optical amplifiers(TW-SOAs). The incoming( outgoing) light beam incidented onto (escaped from) the waveguide structure at a oblique angle through two optical windows, where the top DBR was etched away, and anti-reflection coating was deposited. The light beams inside the optical cavity were reflected repeatedly between two DBRs and propagated along waveguide in a zigzag optical path. The performance of the MCSOA was systematically investigated by extensive numerical simulation based on a traveling-wave model by taking into account the comprehensive effects of DBRs on both the amplification of signals and the filtering of spontaneous emission( SE). Our results show that the MCSOA is capable of achieving a fiber-to-fiber gain as high as 40dB and a low noise figure is less than 3.5dB.
Resumo:
We investigate the dependence of the differential reflection on the structure parameters of quantum dot (QD) heterostructures in pump-probe reflection measurements by both numerical simulations based on the finite-difference time-domain technique and theoretical calculations based on the theory of dielectric films. It is revealed that the value and sign of the differential reflection strongly depend on the thickness of the cap layer and the QD layer. In addition, a comparison between the carrier dynamics in undoped and p-doped InAs/GaAs QDs is carried out by pump-probe reflection measurements. The carrier capture time from the GaAs barrier into the InAs wetting layer and that from the InAs wetting layer into the InAs QDs are extracted by appropriately fitting differential reflection spectra. Moreover, the dependence of the carrier dynamics on the injected carrier density is identified. A detailed analysis of the carrier dynamics in the undoped and p-doped QDs based on the differential reflection spectra is presented, and its difference with that derived from the time-resolved photoluminescence is discussed. (C) 2008 American Institute of Physics.
Resumo:
Mode characteristics are analyzed for electrically injected equilateral-triangle-resonator (ETR) semiconductor microlasers, which are laterally confined by insulating barrier SiO2 and electrode metals Ti-Au. For the ETR without metal layers, the totally confined mode field patterns are derived based on the reflection phase shifts, and the Q-factors are calculated from the far-field emission of the analytical near field distribution, which are agreement very well with the numerical results of the finite-difference time-domain (FDTD) simulation. The polarization dependence reflections for light rays incident on semiconductor-SiO2 -Ti-Au multi-layer structures are accounted in considering the confinement of TE and TM modes in the ETR with the metal layers. The reflectivity will greatly reduce with a Ti layer between SiO2 and Au for light rays with incident angle less than 30 especially for the TE mode, even the thickness of the Ti layer is only 10 nm. If the ETR is laterally confined by SiO2-Au layers without the Ti layer, the Fabry-Perot type modes with an incident angle of zero on one side of the ETR can also have high Q-factor. The FDTD simulation for the ETR confined by metal layers verifies the above analysis based on multi-layer reflections. The output spectra with mode intervals of whispering-gallery modes and Fabry-Perot type modes are observed from different ETR lasers with side length of 10 m, respectively.
Resumo:
The mode frequency and the quality factor of nanowire cavities are calculated from the intensity spectrum obtained by the finite-difference time-domain (FDTD) technique and the Pade approximation. In a free-standing nanowire cavity with dielectric constant epsilon = 6.0 and a length of 5 mu m, quality factors of 130, 159, and 151 are obtained for the HE11 modes with a wavelength around 375 nm, at cavity radius of 60, 75, and 90 nm, respectively. The corresponding quality factors reduce to 78, 94, and 86 for a nanowire cavity standing on a sapphire substrate with a refractive index of 1.8. The mode quality factors are also calculated for the TE01 and TM01 modes, and the mode reflectivities are calculated from the mode quality factors.
Resumo:
The eigenmodes confined in the equilateral triangle resonator (ETR) are analyzed by deriving the eigenvalues and the mode field distributions and by the finite difference time domain (FDTD) technique. The analytical results show that the one-period-length for the mode light rays inside the ETR is the perimeter of the ETR, and the number of transverse modes is limited by the condition of total internal reflection. In addition, the sum of the longitudinal mode index and the transverse mode index should be an even number, which limits the number of confined modes again. Based on the FDTD technique and the Pade approximation, we calculate the mode resonant frequencies and the quality factors from the local maximum and the width of the spectral distribution of the intensity The numerical results of mode frequencies agree very well with the analytical results, and the quality factor of the fundamental mode is usually higher than that of the higher order transverse modes. The results show that the ETR is suitable to realize single-made operation as semiconductor microcavity lasers.
Resumo:
The interface states of [NiFe/Mo](30) and [Fe/Mo](30) multilayers have been investigated by x-ray small angle reflection and diffuse scattering. Significant interface roughness correlation was observed in both ultrathin [NiFe/Mo](30) and [Fe/Mo](30) multilayers. An uncorrelated roughness of about 27-3.1 Angstrom was revealed in the [NiPe/Mo](30) multilayers, which is explained as originating from a transition layer between the NiFe and the Mo layers. By the technique of diffuse scattering, it is clearly indicated that the interfacial roughness of NiFe/Mo is much smaller than that of Fe/Mo although the lattice mismatch is the same in both multilayers.
Resumo:
It is predicted that the Goos-Hanchen displacement in the usual frustrated total internal reflection configuration can be resonantly enhanced greatly by coating a dielectric thin film onto the surface of the first prism when the angle of incidence is larger than the critical angle for total reflection at the prism-vacuum interface and is smaller than but close to the critical angle for total reflection at the prism-film interface. Theoretical analysis shows that the displacement of transmitted beam is about half the displacement of reflected beam in the thick limit of the vacuum gap between the two prisms. This is to be compared with the relation in the usual symmetric double-prism configuration that the displacement of transmitted beam is equal to the displacement of reflected beam. Numerical simulations for a Gaussian incident beam of waist width of 100 wavelengths reveal that when the dielectric thin film is of the order of wavelength in thickness, both the reflected and transmitted beams maintain well the shape of the incident beam in the thick limit of the vacuum gap. So largely enhanced displacements would lead to applications in optical devices and integrated optics. (c) 2007 American Institute of Physics.
Resumo:
Pure X-ray diffraction profiles have been analysed for polyamide 1010 and PA1O1O-BMI system by means of multipeak fitting resolution of X-ray diffraction. The methods of variance and fourth moment have been applied to determine the particle size and strain values for the paracrystalline materials. The results indicated that both variance and fourth moment of X-ray diffraction line profile yielded approximately the same values of the particle size and the strain. The particle sizes of (100) reflection have been found to decrease with increasing BMI content, whereas the strain values increased.
Resumo:
The chlorophyll fluorescence in soybean leaves was observed by a portable fluorometer CF-1000 under field conditions. On clear days, F-0 increased while F, and F-v/F-m decreased gradually in the morning. At midday F-O reached its maximum while F-v and F-v/F-m reached their minimum. The reverse changes occurred in the afternoon. At dusk these parameters could return to levels near those at dawn. Following exposure to a strong sunlight for more than 3 h, the dark-recovery process displayed three phases: (1) slow increases in F-0, F-v and F-v/F-m within the first hour; (2) a faster decrease in F-0 and faster increases in F-v and F-v/F-m within subsequent two hours; (3) a slow decrease in F-0 and slow increases in F-v and F-v/F-m within the fourth hour. In comparison with darkness, weak irradiance had no stimulating effect on the recovery from photoinhibition. Hence the photoinhibition in soybean leaves is mainly the reflection of reversible inactivation of some photosystem 2 reaction centres, but not the result of D1 protein loss.
Resumo:
Compared with the conventional P wave, multi-component seismic data can markedly provide more information, thus improve the quality of reservoir evaluation like formation evaluation etc. With PS wave, better imaging result can be obtained especially in areas involved with gas chimney and high velocity formation. However, the signal-to-noise of multi-component seismic data is normally lower than that of the conventional P wave seismic data, while the frequency range of converted wave is always close to that of the surface wave which adds to the difficulty of removing surface wave. To realize common reflection point data stacking from extracted common conversion point data is a hard nut to crack. The s wave static correction of common receiver point PS wave data is not easy neither. In a word, the processing of multi-component seismic data is more complicated than P wave data. This paper shows some work that has been done, addressing those problems mentioned above. (1) Based on the AVO feature of converted wave, this paper has realized the velocity spectrum of converted waves by using Sarkar’s generalized semblance method taking into account of AVO factor in velocity analysis. (2)We achieve a method of smoothly offset division normal method.Firstly we scan the stacking velocities in different offset divisions for a t0, secondly obtain some hyperbolas using these stacking velocities, then get the travel time for every trace using these hyperbolas; in the end we interpolate the normal move out between two t0 for every trace. (3) Here realize a method of stepwise offset division normal moveout.It is similar to the method of smoothly offset division normal moveout.The main difference is using quadratic curve, sixth order curve or fraction curve to fit these hyperbolas. (4)In this paper, 4 types of travel time versus distance functions in inhomogeneous media whose velocity or slowness varies with depth and vertical travel time have been discussed and used to approximate reflection travel time. The errors of ray path and travel time based on those functions in four layered models were analyzed, and it has shown that effective results of NMO in synthetic or real data can be obtained. (5) The velocity model of converted PS-wave can be considered as that of P -wave based on the ghost source theory, thus the converted wave travel time can be approximated by calculation from 4 equivalent velocity functions: velocity or slowness vary linearly with depth or vertical travel time. Then combining with P wave velocity analysis, the converted wave data can be corrected directly to the P-wave vertical travel time. The improvements were shown in Normal Move out of converted waves with numerical examples and real data. (6) This paper introduces the methods to compute conversion point location in vertical inhomogeneous media based on linear functions of velocity or slowness versus depth or vertical travel time, and introduce three ways to choose appropriate equivalent velocity methods, which are velocity fitting, travel time approximation and semblance coefficient methods.
Resumo:
Multi-waves and multi-component get more and more attentions from oil industry. On the basis of existent research results, My research focuses on some key steps of OBC 4C datum processing. OBC datum must be preprocessed quite well for getting a good image. We show a flow chart of preprocess including attenuation of noise on multi-component datum、elimination ghost by summing P and Z and rotation of horizontal components. This is a good foundation for the coming steps about OBC processing. How to get exact converted point location and to analyze velocity are key points in processing reflection seismic converted wave data. This paper includes computing converted point location, analyzing velocity and nonhyperbolic moveout about converted waves. Anisotropic affects deeply the location of converted wave and the nonhyperbolic moveout. Supposed VTI, we research anisotropic effect on converted wave location and the moveout. Since Vp/Vs is important, we research the compute method of Vp/Vs from post-stack data and pre-stack data. It is a part of the paper that inversing anisotropic parameter by traveltime. Pre-stack time migration of converted wave is an focus, using common-offset Kirchhoff migration, we research the velocity model updating in anisotropic media. I have achieved the following results: 1) using continued Fractions, we proposed a new converted point approximate equation, when the offset is long enough ,the thomsen’s 2 order equation can’t approximate to the exact location of converted point, our equation is a good approximate for the exact location. 2) our new methods about scanning nonhyperbolic velocity and Vp/Vs can get a high quality energy spectrum. And the new moveout can fit the middle and long offset events. Processing the field data get a good result. 3) a new moveout equation, which have the same form as Alkhalifah’s long offset P wave moveout equation, have the same degree preciseness as thomsen’s moveout equation by testing model data. 4) using c as a function of the ratio offset to depth, we can uniform the Li’s and thomsen’s moveout equation in a same equation, the model test tell us choice the reasonable function C can improve the exact degree of Li’s and thomsen’s equation. 5) using traveltime inversion ,we can get anisotropic parameter, which can help to flat the large offset event and propose a model of anisotropic parameter which will useful for converted wave pre-stack time migration in anisotropic media. 6)using our pre-stack time migration method and flow, we can update the velocity model and anisotropic parameter model then get good image. Key words: OBC, Common converted Point (CCP), Nonhyperbolic moveout equation, Normal moveout correction, Velocity analysis, Anisotropic parameters inversion, Kirchhoff anisotropic pre-stack time migration, migration velocity model updating
Resumo:
This dissertation, an exercise in practical theology, consists of a critical conversation between the evangelistic practice of Campus Crusade for Christ in two American university contexts, Bryan Stone's ecclesiologically grounded theology of evangelism, and William Abraham's eschatologically grounded theology of evangelism. It seeks to provide these evangelizing communities several strategic proposals for a more ecclesiologically and eschatologically grounded practice of evangelism within a university context. The current literature on evangelism is long on evangelistic strategy and activity, but short on theological analysis and reflection. This study focuses on concrete practices, but is grounded in a thick description of two particular contexts (derived from qualitative research methods) and a theological analysis of the ecclesiological and eschatological beliefs embedded within their evangelistic activities. The dissertation provides an historical overview of important figures, ideas, and events that helped mold the practice of evangelism inherited by the two ministries of this study, beginning with the famous Haystack Revival on Williams College in 1806. Both ministries, Campus Crusade for Christ at Bowling Green State University (Ohio) and at Washington State University, inherited an evangelistic practice sorely infected with many of the classic distortions that both Abraham and Stone attempt to correct. Qualitative research methods detail the direction that Campus Crusade for Christ at Bowling Green State University (Ohio) and Washington State University have taken the practice of evangelism they inherited. Applying the analytical categories that emerge from a detailed summary of Stone and Abraham to qualitative data of these two ministries reveals several ways evangelism has morphed in a manner sympathetic to Stone's insistence that the central logic of evangelism is the embodied witness of the church. The results of this analysis reveal the subversive and pervasive influence of modernity on these evangelizing communities—an influence that warrants several corrective strategic proposals including: 1) re-situating evangelism within a reading of the biblical narrative that emphasizes the present, social, public, and realized nature of the gospel of the kingdom of God rather than simply its future, personal, private, and unrealized dimensions; 2) clarifying the nature of the evangelizing communities and their relationship to the church; and 3) emphasizing the virtues that characterize a new evangelistic exemplar who is incarnational, intentional, humble, and courageous.
Resumo:
Cinema, with its passive cinematic apparatus and linear narrative is often characterised as a contrast to new media narrative strategies, yet from Vertov’s Man with a Movie Camera to Mike Figgis’ TimeCode and Wong Kar Wei’s 2046 cinema provides narrative strategies and spatial conceptualisations which prefigure or are contiguous with new media environments. Both our perception of what cyberspace constitutes and the technology that actualises those perceptions arise out of and are driven by fantasy and desire. This paper will explore the metaphors used to represent and understand new media aesthetics through cinematic representations of new media environments. Two key themes relevant to new media aesthetics emerge. Irigaray, Haraway, and Grosz are used to explore the de-essentialising haptic and penetrative potential of new technologies and their ability to collapse the boundary between the body and the machine. The second fantasy, of new media as a liminal space that expresses the memorialising function of technology and its relation to mourning, is analysed using Benjamin, Burgin and Rutsky. These altered spaces and perceptions of the body and memory of the post-cinematic subject are illustrated through an analysis of Gondry’s Eternal Sunshine of the Spotless Mind and Jonze’s Being John Malkovich. [From the Author]
Resumo:
The results of a study to characterise the polarisation properties of the photon beam emerging from beamline 5D, mounted on a bending magnet source at the Synchrotron Radiation Source, Daresbury Laboratory, are presented. The expectation values for the Stokes parameters corresponding to the light transmitted by the beamline have been calculated by combining ray-tracing and optical methods. The polarisation of the light at the source is modified both by the beamline geometry and by the reflections at the optical components. Although it is often assumed that the polarising properties of grazing incidence optics are negligible, this assumption leads to rather inaccurate results in the VUV region. A study of the reflectivity shows that even at incidence angles (theta(i) = 80-85degrees) which are far from the Brewster angle (theta(B) similar to 45degrees for VUV and soft X-ray radiation) the residual changes in the amplitudes of the reflected light can result in non-negligible polarisation effects. Furthermore, reflection at grazing incidence gives rise to a substantial change in the phase, and this has the effect of rotating the elliptically polarised state. Theoretical Stokes parameters have been compared with full polarisation measurements obtained using a reflection polarimeter in the energy range 20-40 eV. (C) 2003 Elsevier B.V. All rights reserved.