965 resultados para Geometria riemaniana
Resumo:
Neste trabalho são investigados problemas formulados em geometria cilíndrica na área da dinâmica de gases rarefeitos bem como na área de transferência radiativa. Com relação á dinâmica de gases rarefeitos, primeiramente são abordadas duas formas diferenciadas de se avaliar numericamente as funções de Chapmann-Enskog e de Burnett, necessárias na composição de soluções gerais nessa geometria. Em seguida é apresentada a derivação de uma equação integral baseada no modelo BGK para descrever o fluxo de um gás rarefeito em um tubo cilíndrico. Problemas relacionados á transferência radiativa, incluindo o caso não-linear acoplado radiação-condução, são solucionados com a aplicação de uma versão reformulada do método de ordenadas discretas, sendo que resultados numéricos relevantes a estes problemas são também apresentados.
Resumo:
Este trabalho apresenta simulações físicas de correntes de densidade não conservativas em canal bidimensional e tridimensional. Primeiramente, foram desenvolvidas a seleção e caracterização de materiais granulares, bem como a classificação de tamanhos de grãos adequados capazes de simular tais correntes. Foram desenvolvidas também, metodologias de ensaios, abordando os detalhes como a preparação de materiais, equipamentos e instalações. Como resultados foram selecionados cinco materiais para as simulações, a areia (0,125mm a 0,063mm); os calcários B e C (0,125mm a 0,063mm) e os carvões 205 e carvão 207 (0,354mm a 0,063mm). Através de ensaios por fluxo contínuo de material, caracterizado por uma injeção de mistura durante um período de tempo, foram estudados as características geométricas, dinâmicas e os padrões de deposição destas correntes. Nestes ensaios foram variados o material granular e seu tamanho de grão utilizado na mistura e a concentração da mistura. Observou-se que: a velocidade da corrente aumenta à medida que a massa específica/concentração da mistura aumenta; que à medida que o tamanho do grão diminui, para um mesmo material com a mesma massa específica na mistura, a velocidade aumenta; a altura da cabeça da corrente aumenta à medida que a massa específica/concentração da mistura diminui; a distribuição dos volumes de depósitos apresentou uma tendência geral, com acúmulo de material, da ordem de 90%, nas regiões mais proximais do canal (0-75cm) e acúmulo de material, da ordem de 5%, canal nas regiões mais distais do canal (150-250cm). A distribuição dos grãos indica que o tamanho dos grãos vai diminuindo com a distância, estando as frações maiores (correspondentes a areia fina) presentes nas zonas mais proximais do canal (até 50cm) e com os grãos mais finos chegando até as regiões mais distais do canal (250cm). Foi avaliada, também, a influência da vazão inicial e do volume total de material sobre o desenvolvimento e depósitos das correntes de densidade não conservativas. As características medidas foram a evolução e as velocidades da corrente, além da espessura, granulometria e formas de fundo dos depósitos gerados. Como resultados foi verificado que a velocidade de avanço, espessuras, formas de fundo e distribuição granulométricas do material estão intimamente mais ligada à vazão de entrada do que ao volume total. Nota-se que, a vazão condiciona a tendência geral da evolução da corrente (padrão de variação da velocidade e da deposição) e as formas de fundo, enquanto que o volume de material injetado é responsável apenas pela magnitude dessas variações.
Resumo:
O método LTSN tem sido utilizado na resolução de uma classe abrangente de problemas de transporte de partículas neutras que são reduzidos a um sistema linear algébrico depois da aplicação da transformada de Laplace. Na maioria dos casos estudados os autovalores associados são reais e simétricos. Para o problema de criticalidade os autovalores associados são reais ou imaginários puros e simétricos, e para o o problema de multigrupo podem aparecer autovalores complexos. O objetivo deste trabalho consiste na generalização da formulação LTSN para problemas de transporte com autovalores complexos. Por esse motivo é focada a solução de um problema radiativo de transporte com polarização em uma placa plana. A solução apresentada fundamenta-se na aplicação da transformada de Laplace ao conjunto de equações SN dos problemas resultantes da decomposição da equação de transferência radiativa com polarização em série de Fourier, seguindo o procedimento de Chandrasekhar. Esse procedimento gera 2L + 2 sistemas lineares de ordem 4N dependentes do parâmetro complexo "s". Aqui, L é o grau de anisotropia e N a ordem de quadratura. A solução desse sistema simbólico é obtida através da aplicação da transformada inversa de Laplace depois da inversão da matriz simbólica pelo método da diagonalização. Para a obtenção das constantes de integração é assumido que os componentes do vetor de Stokes são reais e as matrizes dos autovalores e autovetores são separadas em suas partes real e imaginária. A solução LTSN para autovalores complexos é validada através da comparação da solução para uma placa com espessura unitária, grau de anisotropia L = 13, albedo de espalhamento simples $ = 0:99, coe ciente de re exão de Lambert ¸0 = 0:1 e N = 150, segundo dados da literatura consultada.
Resumo:
Neste trabalho desenvolve-se um estudo numérico do fluxo de ar em torno da geometria de um pára-quedas tradicional simplificado, para alguns valores de Reynolds. O método baseia-se na solução das equações incompressíveis de Navier- Stokes discretizadas pelo método de diferenças finitas e integradas pelo método de Runge-Kutta. Utiliza-se o método dos contornos virtuais para representar a geometria numa malha cartesiana e o método de otimização não-linear dos poliedros flexíveis para otimização do coeficiente de arraste calculado através do código de dinâmica de fluidos computacional; esteé um método de busca multivariável, onde o pior vértice de um poliedro com n + 1 vérticesé substituído por um novo.
Resumo:
O presente estudo tem por objectivo compreender como é que os alunos se apropriam dos conceitos da Geometria do sétimo ano de escolaridade quando usam materiais manipuláveis. Com este propósito formularam-se as seguintes questões: (1) Quais os processos matemáticos utilizados pelos alunos ao realizarem tarefas recorrendo aos materiais manipuláveis? (2) Como é que os materiais manipuláveis promovem o desenvolvimento dos conhecimentos geométricos? (3) Qual o contributo dado pelos materiais manipuláveis no desenvolvimento de determinadas competências matemáticas nos alunos? (4) Qual é o desempenho matemático dos alunos ao trabalharem, cooperativamente, em tarefas com recurso a materiais manipuláveis? Tendo em vista os objectivos do estudo, analisou-se o trabalho de uma turma do sétimo ano de escolaridade em torno da realização de dez tarefas que compreendiam o uso de diferentes materiais manipuláveis e, dentro da turma, estudaram-se dois grupos em particular. A investigação segue uma metodologia qualitativa de natureza interpretativa. Os dados foram recolhidos pela investigadora através de registos escritos feitos a partir da observação directa realizada nas aulas, de registos escritos e audiovisuais do trabalho dos alunos, e de um questionário aplicado aos mesmos no final da experiência. A análise dos dados e a disposição das conclusões foram estabelecidas conforme o papel dos materiais manipuláveis no aperfeiçoamento de processos matemáticos, na aprendizagem de conhecimentos geométricos, no desenvolvimento de competências matemáticas e no desempenho matemático dos alunos. Das conclusões que emergem do estudo destacam-se: - A realização das tarefas por parte dos alunos, com recurso aos materiais manipuláveis, parece ter contribuído para o aperfeiçoamento de alguns processos matemáticos, o que parece evidenciar que desenvolveram a aptidão na sua apropriação e aplicabilidade. O facto de poderem tocar, mover ou manipular estes materiais, enfatizam a forma como aprendem Matemática valorizando os processos utilizados nas suas experiências de construção da aprendizagem. As tarefas cujo enunciado apelou directamente à investigação e à descoberta foram aquelas que desencadearam a utilização de um maior número de processos matemáticos. - Os vários conceitos geométricos foram apreendidos de forma significativa pelos alunos, pois a aprendizagem foi feita a partir da sua própria experiência. A utilização de materiais manipuláveis facilitou as interacções entre os alunos, originando mais momentos de partilha e discussão dos seus raciocínios e processos. - Os alunos trabalharam ao nível do desenvolvimento de competências principalmente, competência de pensamento matemático, pois contactaram e dominaram modos matemáticos de pensamento; competência de raciocínio matemático, que implica estar apto a raciocinar matematicamente; competência em instrumentos e acessórios, que implica estar apto a fazer uso e estabelecer relações com instrumentos e acessórios matemáticos; competência de comunicação que envolve estar apto a comunicar em, com e sobre a matemática e competência de cooperação. - Os dados parecem sugerir que houve uma evolução no desempenho dos alunos a vários níveis, nomeadamente: no trabalho cooperativo, no envolvimento da tarefa e nas interacções estabelecidas.
Resumo:
Pedro Manuel Augusto
Resumo:
Universidade da Madeira
Resumo:
O estudo aqui apresentado teve como objetivo compreender como é que os alunos aprendem Geometria. Para melhor estudar este problema, o mesmo foi dissecado em três questões: (a) Qual o papel dos materiais manipuláveis na estruturação do pensamento geométrico dos alunos? (b) Como comunicam as ideias geométricas? (c) Como é que os modelos concretos facilitam a passagem do concreto para o abstrato? Analisou-se o trabalho de uma turma do oitavo ano de escolaridade em torno da realização de duas tarefas que compreendiam a dedução dos critérios de paralelismo e perpendicularidade entre planos, e entre retas e planos, e a resolução de problemas realistas com base nesses critérios. A investigação realizada foi de natureza qualitativa e os dados foram recolhidos pela investigadora através de registos audiovisuais, com câmara e vídeo, do trabalho dos alunos. A análise dos dados fez-se com base nas questões acima apresentadas. Das conclusões que advêm do estudo destaca-se o papel essencial dos materiais manipuláveis, e dos modelos concretos, na construção e concetualização do conhecimento geométrico dos alunos. De referir ainda a importância das atividades de natureza exploratória e investigativa, as quais incidiram sobre problemas abertos, onde as descobertas feitas foram mais convincentes e surpreendentes e a explicação lógica das mesmas permitiram matematizar a realidade.
Resumo:
O trabalho aqui apresentado visa dar a conhecer aos leitores como os alunos aprendem Geometria a nível do 7.º ano de escolaridade (3.º Ciclo do Ensino Básico). O que me motivou à escolha deste tema foi compreender o que sentem os alunos quando se deparam com situações problemáticas que envolvem conhecimentos geométricos e como são capazes de as resolver. Por esta razão predispus-me a realizar uma investigação cujo propósito foi compreender como os alunos aprendem Geometria quando frequentam o 7.º ano de escolaridade. Para poder efetuar o estudo, desenvolver o problema proposto e orientar o trabalho de investigação, considerei três questões fundamentais: 1. Como é que a utilização de materiais manipuláveis contribui para a aprendizagem de conceitos e propriedades geométricas? 2. Como é que o uso de software Geométrico contribui para a construção do pensamento geométrico dos alunos? 3. Como é que a utilização de materiais manipuláveis e de software Geométrico contribuem para o desenvolvimento do raciocínio e da comunicação matemática? O estudo foi desenvolvido, ao longo dos segundo e terceiro períodos, do corrente ano letivo, numa turma de 7.º ano de escolaridade de uma escola básica dos 2.º e 3.º ciclos do Concelho de Câmara de Lobos, Ilha da Madeira. Os dados recolhidos foram resultado da aplicação de atividades que envolvem materiais manipuláveis e o programa de Geometria Dinâmica: GeoGebra. Neste trabalho investigativo, utilizei o método qualitativo onde a recolha de dados foi baseada na observação direta dos alunos em contexto sala de aula (com recurso aos meios audiovisuais) e na entrega de resoluções das atividades propostas (em formato de papel e formato digital). A análise dos dados foi realizada de acordo com as questões previamente formuladas. As conclusões refletem o papel essencial do professor como principal mediador de todo o processo de ensino e aprendizagem do aluno, assim como, a importância da diversificação de estratégias na sala de aula de Matemática.
Resumo:
Nesta dissertação começo por fazer uma pequena reflexão sobre a minha experiência profissional. Seguindo-se a abordagem teórica que esteve como suporte para o desenvolvimento do meu estudo de caso, implementado nas minhas quatro turmas de 7º ano, num total de 109 alunos. Este estudo, baseou-se na aplicação de duas tarefas na unidade temática das Funções utilizando as tecnologias, nomeadamente, do robot MINDSTORMS® NXT da LEGO® e do software de geometria dinâmica GeoGebra como ferramentas de introdução e consolidação de conteúdos. O propósito desta tese de mestrado centra-se na importância e na relevância da utilização destas tecnologias no ensino da Matemática, no caso específico das Funções no 7º ano. A recolha e análise dos dados para a elaboração desta tese foram baseadas exclusivamente na vivência dos alunos aquando da realização das tarefas propostas, através da grelha de observação diária, da gravação em áudio e vídeo, de fotografias, das fichas de trabalho e dos questionários, visto ter optado por uma investigação qualitativa em que a participação dos intervenientes é fundamental. Foi evidente uma aceitação positiva por parte dos alunos a estas tecnologias. Assim sendo, permitiu-me concluir que realmente a aprendizagem dos mesmos foi significativa visto que a utilização destas ferramentas facilitou a aprendizagem de alguns conceitos abordados na unidade temática das Funções.