982 resultados para Gases, Asphyxiating and poisonous


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the cost of mineral fertilisers increases globally, organic soil amendments (OAs) from agricultural sources are increasingly being used as substitutes for nitrogen. However, the impact of OAs on the production of greenhouse gases (CO2 and N2O) is not well understood. A 60-day laboratory incubation experiment was conducted to investigate the impacts of applying OAs (equivalent to 296 kg N ha−1 on average) on N2O and CO2 emissions and soil properties of clay and sandy loam soils from sugar cane production. The experiment included 6 treatments, one being an un-amended (UN) control with addition of five OAs being raw mill mud (MM), composted mill mud (CM), high N compost (HC), rice husk biochar (RB), and raw mill mud plus rice husk biochar (MB). These OAs were incubated at 60, 75 and 90% water-filled pore space (WFPS) at 25°C with urea (equivalent to 200 kg N ha−1) added to the soils thirty days after the incubation commenced. Results showed WFPS did not influence CO2 emissions over the 60 days but the magnitude of emissions as a proportion of C applied was RB < CM < MB < HC andy loam at all WFPS, and could be ranked RB and N2O emissions as a function of the dry matter and C/N ratio of the OAs, WFPS, and the soil CEC. Application of RB reduced N2O emissions by as much as 42-64% depending on WFPS. The reductions in both CO2 and N2O emissions after application of RB were due to a reduced bioavailability of C and not immobilisation of N. These findings show that the effect of OAs on soil GHG emissions can vary substantially depending on their chemical properties. OAs with a high availability of labile C and N can lead to elevated emissions of CO2 and N2O, while rice husk biochar showed potential in reducing overall soil GHG emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boreal peatlands represent a considerable portion of the global carbon (C) pool. Water-level drawdown (WLD) causes peatland drying and induces a vegetation change, which affects the decomposition of soil organic matter and the release of greenhouse gases (CO2 and CH4). The objective of this thesis was to study the microbial communities related to the C cycle and their response to WLD in two boreal peatlands. Both sampling depth and site type had a strong impact on all microbial communities. In general, bacteria dominated the deeper layers of the nutrient-rich fen and the wettest surfaces of the nutrient-poor bog sites, whereas fungi seemed more abundant in the drier surfaces of the bog. WLD clearly affected the microbial communities but the effect was dependent on site type. The fungal and methane-oxidizing bacteria (MOB) community composition changed at all sites but the actinobacterial community response was apparent only in the fen after WLD. Microbial communities became more similar among sites after long-term WLD. Litter quality had a large impact on community composition, whereas the effects of site type and WLD were relatively minor. The decomposition rate of fresh organic matter was influenced slightly by actinobacteria, but not at all by fungi. Field respiration measurements in the northern fen indicated that WLD accelerates the decomposition of soil organic matter. In addition, a correlation between activity and certain fungal sequences indicated that community composition affects the decomposition of older organic matter in deeper peat layers. WLD had a negative impact on CH4 oxidation, especially in the oligotrophic fen. Fungal sequences were matched to taxa capable of utilizing a broad range of substrates. Most of the actinobacterial sequences could not be matched to characterized taxa in reference databases. This thesis represents the first investigation of microbial communities and their response to WLD among a variety of boreal peatland habitats. The results indicate that microbial community responses to WLD are complex but dependent on peatland type, litter quality, depth, and variable among microbes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the research was to determine how well Finnish children and youngsters in different ages recognize poisonous and eatable wild plant species and to which characteristics they pay attention to when identifying plants. The purpose was also to find out, how well the pupils and students can estimate if the wild plants are either poisonous or eatable. The goal was to gather knowledge about what factors explain these recognition and estimation skills. Also information was wanted about attitudes of children and youngsters towards recognizing and learning the poisonous and eatable wild plants. The research was made on subjects of 48 children and youngsters from grade 6 in primary school, grade 8 in lower- secondary school and vocational school. Both quantitative and qualitative methods were used. A plant recognition test, where 38 pictures on plants was presented, was made for the all subjects. The subjects were requested to name the plants and classify them to be either poisonous or eatable. In addition six students were interviewed from each class, altogether 18 subjects. The themes of the interviews were the attitudes towards eatable and poisonous wild plants and to learn to recognize species. During the interview pictures of plants were looked at and the subjects told which characteristics they pay attention to when trying to recognize it. The results showed that on average wild plants were recognized insufficiently. Standard variation in responses was large in all classes researched. The subjects got better results in classifying of the plants to be either poisonous or eatable than in naming the plants. This research shows that even when a subject cannot name a plant it is still possible for the subject to classify the plant to be either poisonous or eatable. Gender and being an immigrant explained the recognition skills of poisonous and eatable plants so that girls were somewhat better to recognize plant species and native Finns recognized poisonous and eatable plants better that immigrants. Age did not explain the skills to recognize species directly, since students in lower- secondary school recognized the poisonous and eatable plants better than primary school and vocational school students. In skills to estimate plants poisonous or eatability there was no difference according to gender, age, or immigrant background. The subjects considered the skills to recognize poisonous and eatable plants important. Learning to recognize plants at school was not considered interesting however. Since the recognition of plants in neighborhood belongs to tasks of general education it is important to think about how the teaching could be made interesting. According to findings of this study, especially the recognition of poisonous plants was considered important by the subjects. This knowledge as well as teaching about possibilities to utilize plants could be used as a way to motivate and teach the students. Avainsanat Nyckelord - Keywords Plant species recognition, recognition of poisonous plants, recognition of eatable plants, plant species education

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resumen: Se propone utilizar un óxido como el Cr2O3 como catalizador ya que se ha determinado anteriormente, en la primera etapa de esta investigación, (“Estudio comparativo de la retención de SO2 sobre óxidos de metales de transición soportados en alúmina”), que la retención de SO2 sobre su superficie es un proceso de quimisorción con formación de especies sulfito superficiales sobre sitios básicos y un proceso de óxido reducción del ión metálico. Apoya este mecanismo el hecho de que la cantidad de SO2 adsorbido es función de la temperatura. La mayor eficiencia del Cr2O3 puede explicarse en base a sus propiedades superficiales, lo cual ha sido utilizado en la segunda etapa de reacción de reducción, ya que se ha completado la etapa inicial de quimisorción. En la segunda etapa de esta investigación (“Estudio de la reacción de reducción de SO2 con CH4 a altas temperaturas sobre catalizador de Cr2O3 soportado en alúmina”), se apuntó al estudio de un nuevo tipo de sinergia entre propiedades ácido-base y propiedades redox en una misma superficie. Esta tercera etapa apuntó a determinar la influencia que tiene el O2 en este proceso, ya que el O2 se encuentra presente en las chimeneas industriales en las condiciones de reacción entre el SO2 y el CH4, y produce modificaciones en los parámetros de reacción. Se experimentó con diferentes masas de catalizador y flujos de los distintos gases, y se estudió la influencia de la presencia de oxígeno en la reacción y particularmente con diferentes flujos del mismo, y la posibilidad de regeneración del catalizador.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resumen: Se propone utilizar un óxido como el Cr2O3 como catalizador ya que se ha determinado anteriormente, en la primera etapa de esta investigación, (“Estudio comparativo de la retención de SO2 sobre óxidos de metales de transición soportados en alúmina”), que la retención de SO2 sobre su superficie es un proceso de quimisorción con formación de especies sulfito superficiales sobre sitios básicos y un proceso de óxido reducción del ión metálico. Apoya este mecanismo el hecho de que la cantidad de SO2 adsorbido es función de la temperatura. La mayor eficiencia del Cr2O3 puede explicarse en base a sus propiedades superficiales, lo cual ha sido utilizado en la segunda etapa de reacción de reducción, ya que se ha completado la etapa inicial de quimisorción. En la segunda etapa de esta investigación (“Estudio de la reacción de reducción de SO2 con CH4 a altas temperaturas sobre catalizador de Cr2O3 soportado en alúmina”), se apuntó al estudio de un nuevo tipo de sinergia entre propiedades ácido-base y propiedades redox en una misma superficie. La tercera etapa apuntó a determinar la influencia que tiene el O2 en este proceso, ya que el O2 se encuentra presente en las chimeneas industriales en las condiciones de reacción entre el SO2 y el CH4, y produce modificaciones en los parámetros de reacción. Se experimentó con diferentes masas de catalizador y flujos de los distintos gases, y se estudió la influencia de la presencia de oxígeno en la reacción y particularmente con diferentes flujos del mismo, y la posibilidad de regeneración del catalizador.En esta cuarta y última etapa se están estudiando los cambios que se producen en la reacción al pasar de escala laboratorio a planta piloto utilizando una columna de mayor diámetro construída en metal. A través de los datos experimentales se está estudiando, en conjunto con el INIFTA, la presencia de especies sulfito y sulfato sobre la superficie del soporte. Adicionalmente, por medio del programa VASP (Vienna Ab-initio Simulation Package), se analiza la interacción entre los reactivos gaseosos y el soporte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic resonance techniques have given us a powerful means for investigating dynamical processes in gases, liquids and solids. Dynamical effects manifest themselves in both resonance line shifts and linewidths, and, accordingly, require detailed analyses to extract desired information. The success of a magnetic resonance experiment depends critically on relaxation mechanisms to maintain thermal equilibrium between spin states. Consequently, there must be an interaction between the excited spin states and their immediate molecular environment which promote changes in spin orientation while excess magnetic energy is coupled into other degrees of freedom by non-radiative processes. This is well known as spin-lattice relaxation. Certain dynamical processes cause fluctuations in the spin state energy levels leading to spin-spin relaxation and, here again, the environment at the molecular level plays a significant role in the magnitude of interaction. Relatively few electron spin relaxation studies of solutions have been conducted and the present work is addressed toward the extension of our knowledge in this area and the retrieval of dynamical information from line shape analyses on a time scale comparable to diffusion controlled phenomena.

Specifically, the electron spin relaxation of three Mn+23d5 complexes, Mn(CH3CN)6+2, MnCl4-2 in acetonitrile has been studied in considerable detail. The effective spin Hamiltonian constants were carefully evaluated under a wide range of experimental conditions. Resonance widths of these Mn+2 complexes were studied in the presence of various excess ligand ions and as a function of concentration, viscosity, temperature and frequency (X-band, ~9.5 Ԍ Hz and K-band, ~35 Ԍ Hz).

A number of interesting conclusions were drawn from these studies. For the Et4NCl-4-2 system several relaxation mechanisms leading to resonance broadening were observed. One source appears to arise through spin-orbit interactions caused by modulation of the ligand field resulting from transient distortions of the complex imparted by solvent fluctuations in the immediate surroundings of the paramagnetic ion. An additional spin relaxation was assigned to the formation of ion pairs [Et4N+…MnCl4-2] and it was possible to estimate the dissociation constant for this specie in acetonitrile.

The Bu4NBr-MnBr4-2 study was considerably more interesting. As in the former case, solvent fluctuations and ion-pairing of the paramagnetic complex [Bu4N+…MnBr4-2] provide significant relaxation for the electronic spin system. Most interesting, without doubt, is the onset of a new relaxation mechanism leading to resonance broadening which is best interpreted as chemical exchange. Thus, assuming that resonance widths were simply governed by electron spin state lifetimes, we were able to extract dynamical information from an interaction in which the initial and final states are the same

MnBr4-2 + Br- = MnBr4-2 + Br-.

The bimolecular rate constants were obtained at six different temperatures and their magnitudes suggested that the exchange is probably diffusion controlled with essentially a zero energy of activation. The most important source of spin relaxation in this system stems directly from dipolar interactions between the manganese 3d5 electrons. Moreover, the dipolar broadening is strongly frequency dependent indicating a deviation between the transverse and longitudinal relaxation times. We are led to the conclusion that the 3d5 spin states of ion-paired MnBr4-2 are significantly correlated so that dynamical processes are also entering the picture. It was possible to estimate the correlation time, Td, characterizing this dynamical process.

In Part II we study nuclear magnetic relaxation of bromine ions in the MnBr4-2-Bu4NBr-acetonitrile system. Essentially we monitor the 79Br and 81Br linewidths in response to the [MnBr4-2]/[Br-] ratio with the express purpose of supporting our contention that exchange is occurring between "free" bromine ions in the solvent and bromine in the first coordination sphere of the paramagnetic anion. The complexity of the system elicited a two-part study: (1) the linewidth behavior of Bu4NBr in anhydrous CH3CN in the absence of MnBr4-2 and (2) in the presence of MnBr4-2. It was concluded in study (1) that dynamical association, Bu4NBr k1= Bu4N+ + Br-, was modulating field-gradient interactions at frequencies high enough to provide an estimation of the unimolecular rate constant, k1. A comparison of the two isotopic bromine linewidth-mole fraction results led to the conclusion that quadrupole interactions provided the dominant relaxation mechanism. In study (2) the "residual" bromine linewidths for both 79Br and 81Br are clearly controlled by quadrupole interactions which appear to be modulated by very rapid dynamical processes other than molecular reorientation. We conclude that the "residual" linewidth has its origin in chemical exchange and that bromine nuclei exchange rapidly between a "free" solvated ion and the paramagnetic complex, MnBr4-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: While smoking is the major cause of chronic obstructive pulmonary disease (COPD), occupational exposures to vapors, gases, dusts, and fumes (VGDF) increase COPD risk. This case-control study estimated the risk of COPD attributable to occupational exposures among construction workers. METHODS: The study population included 834 cases and 1243 controls participating in a national medical screening program for older construction workers between 1997 and 2013. Qualitative exposure indices were developed based on lifetime work and exposure histories. RESULTS: Approximately 18% (95% CI = 2-24%) of COPD risk can be attributed to construction-related exposures, which are additive to the risk contributed by smoking. A measure of all VGDF exposures combined was a strong predictor of COPD risk. CONCLUSIONS: Construction workers are at increased risk of COPD as a result of broad and complex effects of many exposures acting independently or interactively. Control methods should be implemented to prevent worker exposures, and smoking cessation should be promoted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Jerry Blackford of the Plymouth Marine Laboratory leads the UK Research Council funded Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage (QICS) program, and is a founding member of the new UK CCS Research Centre leading the environment research team. Here he talks to Muriel Cozier about how the world's first experiment to simulate a CO2 leak from underground storage in a marine environment will go a long way toward improving our understanding of a series of complex interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Increasing concentrations of atmospheric greenhouse gases (GHG) and its impact on the climate has resulted in many international governments committing to reduce their GHG emissions. The UK, for example, has committed to reducing its carbon emissions by 80% by 2050. Suggested ways of reaching such a target are to increase dependency on offshore wind, offshore gas and nuclear. It is not clear, however, how the construction, operation and decommissioning of these energy systems will impact marine ecosystem services, i.e. the services obtained by people from the natural environment such as food provisioning, climate regulation and cultural inspiration. Research on ecosystem service impacts associated with offshore energy technologies is still in its infancy. The objective of this review is to bolster the evidence base by firstly, recording and describing the impacts of energy technologies at the marine ecosystems and human level in a consistent and transparent way; secondly, to translate these ecosystem and human impacts into ecosystem service impacts by using a framework to ensure consistency and comparability. The output of this process will be an objective synthesis of ecosystem service impacts comprehensive enough to cover different types of energy under the same analysis and to assist in informing how the provision of ecosystem services will change under different energy provisioning scenarios. Methods: Relevant studies will be sourced using publication databases and selected using a set of selection criteria including the identification of: (i) relevant subject populations such as marine and coastal species, marine habitat types and the general public; (ii) relevant exposure types including offshore wind farms, offshore oil and gas platforms and offshore structures connected with nuclear; (iii) relevant outcomes including changes in species structure and diversity; changes in benthic, demersal and pelagic habitats; and changes in cultural services. The impacts will be synthesised and described using a systematic map. To translate these findings into ecosystem service impacts, the Common International Classification of Ecosystem Services (CICES) and Millennium Ecosystem Assessment (MEA) frameworks are used and a detailed description of the steps taken provided to ensure transparency and replicability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:


The permeability of concrete is influenced by the porosity and the interconnectivity of the pores in the cement paste and the microcracks in concrete, especially in the interface of paste-aggregate. The movements of gases, liquids, and ions through concrete is important because of their interactions with concrete constituents, including pore water, which can alter the integrity of concrete directly and indirectly, leading to the deterioration of structures. This study reports the findings from an investigation carried out to study the effect of the mixture variations on the durability of medium- and high-strength self-consolidating concrete (SCC). The mixture variations studied include the type of mineral admixtures, such as limestone powder (LSP) and pulverized fuel ash (PFA), and viscositymodifying admixtures (VMA) for both medium- and high-strength SCC. Air permeability, water permeability, capillary absorption, and chloride diffusivity were used to assess the durability of SCC mixtures in comparison with normal, vibrated concretes. The results showed that SCC mixtures, for medium- and high-strength grades using PFA followed by LSP, have lower permeability properties compared with normal concretes. SCC made with VMA had a higher sorptivity, air permeability, and water permeability compared with other SCC mixtures, which can be attributed to higher watercement ratio (w/c) and lack of pore filling effect. An in-place migration coefficient was obtained using the in-place ion migration test. This was used to compare the potential diffusivity of different concretes. The results indicated that SCC, for both grades of strength, made with PFA showed much lower diffusivity values in comparison with other mixtures, whereas the SCC mixtures with VMA showed higher diffusivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Edificações

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is divided into two distinct parts. The first part consists of the study of the metal organic framework UiO-66Zr, where the aim was to determine the force field that best describes the adsorption equilibrium properties of two different gases, methane and carbon dioxide. The other part of the work focuses on the study of the single wall carbon nanotube topology for ethane adsorption; the aim was to simplify as much as possible the solid-fluid force field model to increase the computational efficiency of the Monte Carlo simulations. The choice of both adsorbents relies on their potential use in adsorption processes, such as the capture and storage of carbon dioxide, natural gas storage, separation of components of biogas, and olefin/paraffin separations. The adsorption studies on the two porous materials were performed by molecular simulation using the grand canonical Monte Carlo (μ,V,T) method, over the temperature range of 298-343 K and pressure range 0.06-70 bar. The calibration curves of pressure and density as a function of chemical potential and temperature for the three adsorbates under study, were obtained Monte Carlo simulation in the canonical ensemble (N,V,T); polynomial fit and interpolation of the obtained data allowed to determine the pressure and gas density at any chemical potential. The adsorption equilibria of methane and carbon dioxide in UiO-66Zr were simulated and compared with the experimental data obtained by Jasmina H. Cavka et al. The results show that the best force field for both gases is a chargeless united-atom force field based on the TraPPE model. Using this validated force field it was possible to estimate the isosteric heats of adsorption and the Henry constants. In the Grand-Canonical Monte Carlo simulations of carbon nanotubes, we conclude that the fastest type of run is obtained with a force field that approximates the nanotube as a smooth cylinder; this approximation gives execution times that are 1.6 times faster than the typical atomistic runs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are a large number of agronomic-ecological interactions that occur in a world with increasing levels of CO2, higher temperatures and a more variable climate. Climate change and the associated severe problems will alter soil microbial populations and diversity. Soils supply many atmospheric green house gases by performing as sources or sinks. The most important of these gases include CH4, CO2 and N2O. Most of the green house gases production and consumption processes in soil are probably due to microorganisms. There is strong inquisitiveness to store carbon (C) in soils to balance global climate change. Microorganisms are vital to C sequestration by mediating putrefaction and controlling the paneling of plant residue-C between CO2 respiration losses or storage in semi-permanent soil-C pools. Microbial population groups and utility can be manipulated or distorted in the course of disturbance and C inputs to either support or edge the retention of C. Fungi play a significant role in decomposition and appear to produce organic matter that is more recalcitrant and favor long-term C storage and thus are key functional group to focus on in developing C sequestration systems. Plant residue chemistry can influence microbial communities and C loss or flow into soil C pools. Therefore, as research takings to maximize C sequestration for agricultural and forest ecosystems - moreover plant biomass production, similar studies should be conducted on microbial communities that considers the environmental situations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Am Institut für Mikrostrukturtechnologie und Analytik wurde eine neue Technik entwickelt, die neue Anwendungen und Methoden der Mikro- und Nanostrukturierung auf Basis eines neuen Verfahrens erschlossen hat. NANOJET führt über die passive Rastersondenmikroskopie hinaus zu einem vielseitigen, aktiven Bearbeitungswerkzeug auf der Mikro- und Nanometerskala. NANOJET (NANOstructuring Downstream PlasmaJET) ist eine aktive Rasterkraft-Mikroskopie-Sonde. Radikale (chemisch aktive Teilchen, die ein ungepaartes Valenzelektron besitzen) strömen aus dem Ende einer ultradünnen, hohlen Rasterkraftmikroskop-Spitze. Dadurch wird es möglich, über die übliche passive Abtastung einer Probenoberfläche hinausgehend, diese simultan und in-situ durch chemische Reaktionen zu verändern. Die Abtragung von Material wird durch eine chemische Ätzreaktion erreicht. In dieser Arbeit wurde zum größten Teil Photoresist als Substrat für die Ätzexperimente verwendet. Für das Ätzen des Resists wurden die Atome des Fluors und des Sauerstoffs im Grundzustand als verantwortlich identifiziert. Durch Experimente und durch Ergänzung von Literaturdaten wurde die Annahme bestätigt, dass Sauerstoffradikale mit Unterstützung von Fluorradikalen für die hohen erzielten Ätzraten verantwortlich sind. Die Beimischung von Fluor in einem Sauerstoffplasma führt zu einer Verringerung der Aktivierungsenergie für die Ätzreaktion gegenüber Verwendung reinen Sauerstoffs. In weiterer Folge wurde ein Strukturierungsverfahren dargestellt. Hierbei wurden "geformte Kapillaren" (mikrostrukturierte Aperturen) eingesetzt. Die Herstellung der Aperturen erfolgte durch einen elektrochemischen Ätzstop-Prozess. Die typische Größe der unter Verwendung der "geformten Kapillaren" geätzten Strukturen entsprach den Kapillarenöffnungen. Es wurde ein Monte-Carlo Simulationsprogramm entwickelt, welches den Transport der reaktiven Teilchen in der langen Transportröhre simulierte. Es wurde sowohl die Transmission der Teilchen in der Transportröhre und der Kapillare als auch ihre Winkelverteilung nach dem Verlassen der Kapillare berechnet. Das Aspektverhältnis der Röhren hat dabei einen sehr starken Einfluss. Mit einem steigenden Aspektverhältnis nahm die Transmission exponentiell ab. Die geschaffene experimentelle Infrastruktur wurde genutzt, um auch biologische Objekte zu behandeln und zu untersuchen. Hierfür wurde eine neue Methodik entwickelt, die eine dreidimensionale Darstellung des Zellinneren erlaubt. Dies wurde durch die kontrollierte Abtragung von Material aus der Zellmembran durchgeführt. Die Abtragung der Zellmembran erfolgte mittels Sauerstoffradikalen, die durch eine hohle Spitze lokalisiert zum Ort der Reaktion transportiert wurden. Ein piezoresistiver Cantilever diente als Sensor in dem zur Bildgebung eingesetzten RKM. Das entwickelte Verfahren ermöglicht es nun erstmals, schonend Zellen zu öffnen und die innen liegenden Organellen weiter zu untersuchen. Als Nachweis für weitere Verwendungsmöglichkeiten des NANOJET-Verfahrens wurde auch Knochenmaterial behandelt. Die Ergebnisse dieser Experimente zeigen klar, dass das Verfahren für vielfältige biologische Materialien verwendbar ist und somit nun ein weiter Anwendungskreis in der Biologie und Medizin offen steht.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An overview is given of current issues concerning the coupling between the stratosphere and troposphere. The tropopause region, more generally the upper troposphere/lower stratosphere, is the region of direct contact where exchange of material takes place. Dynamical coupling through angular momentum transfer by waves occurs nonlocally, and provides a generally negative torque on the stratosphere which drives an equator-to-pole circulation (i.e., towards the Earth’s axis of rotation). This wave-driven circulation is the principal mechanism for intraseasonal and interannual variability in the extratropical stratosphere. Although such variability is generally dynamical in origin, there are important chemical and radiative feedbacks. The location of the tropopause has implications for radiative forcing of climate, through its effect on the distribution of relatively short-lived greenhouse gases (ozone and water vapour). Some outstanding puzzles in our current understanding are identified. Attention is focused on possible climate sensitivities, and how these may be tested and constrained. Results from the Canadian Middle Atmosphere Model (CMAM), a fully interactive radiative-chemical-dynamical general circulation model, are used to illustrate some of the points.