975 resultados para Game-Strategies


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Up to 15 people can participate in the game, which is supervised by a moderator. Households consisting of 1-5 people discuss options for diversification of household strategies. Aim of the game: By devising appropriate strategies, households seek to stand up to various types of events while improving their economic and social situation and, at the same time, taking account of ecological conditions. The annual General Community Meeting (GCM) provides an opportunity for households to create a general set-up at the local level that is more or less favourable to the strategies they are pursuing. The development of a community investment strategy, to be implemented by the GCM, and successful coordination between households will allow players to optimise their investments at the household level. The household who owns the most assets at the end of the game wins. Players participate very actively, as the game stimulates lively and interesting discussions. They find themselves confronted with different types of decision-making related to the reality of their daily lives. They explore different ways to model their own household strategies and discuss risks and opportunities. Reflections on the course of the game continually refer to the real-life situations of the participants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three teams consisting of 2 to 5 persons each play the game. Each team represents a farm. Each team decides jointly on its strategy. In annual meetings in winter, the farm teams jointly discuss, evaluate and decide on how to proceed and actions to be taken. The farms make use of three different pasture areas (village pasture, intensive pasture and summer pasture) for grazing their livestock. The carrying capacity of each pasture area is different and varies according to the season. In each season, the farms have to decide on how many livestock units to graze on which pasture. Overgrazing and pasture degradation occur if the total number of livestock units exceeds the carrying capacity of a specific pasture area. Overgrazing results in a reduction of pasture productivity. To diversify and improve their livelihood strategy farms can make individual investments to increase productivity at the farm level, eg. in fodder production or in income generating activities. At the community level, collective investments can be made which may influence livestock and household economy, e.g. rehabilitate and improve pasture productivity, improve living conditions on remote pastures etc. Events occurring in the course of the game represent different types of (risk) factors such as meteorology, market, politics etc. that may positively or negatively influence livestock production and household economy. A sustainable management of pastures requires that farms actively regulate the development of their herds, that they take measures to prevent pasture degradation and to improve pasture productivity, and that they find a balance between livestock economy and other productive activities. The game has a double aim: a) each farm aims at its economic success and prosperity, and b) the three farm teams jointly have to find and implement strategies for a sustainable use of pasture areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three extended families live around a lake. One family are rice farmers, the second family are vegetable farmers, and the third are a family of livestock herders. All of them depend on the use of lake water for their production, and all of them need large quantities of water. All are dependent on the use of the lake water to secure their livelihood. In the game, the families are represented by their councils of elders. Each of the councils has to find means and ways to increase production in order to keep up with the growth of its family and their demands. This puts more and more pressure on the water resources, increasing the risk of overuse. Conflicts over water are about to emerge between the families. Each council of elders must try to pursue its families interests, while at the same time preventing excessive pressure on the water resources. Once a council of elders is no longer able to meet the needs of its family, it is excluded from the game. Will the parties cooperate or compete? To face the challenge of balancing economic well-being, sustainable resource management, and individual and collective interests, the three parties have a set of options for action at hand. These include power play to safeguard their own interests, communication and cooperation to negotiate with neighbours, and searching for alternatives to reduce pressure on existing water resources. During the game the players can experience how tensions may arise, increase and finally escalate. They realise what impact power play has and how alliances form, and the importance of trust-building measures, consensus and cooperation. From the insights gained, important conflict prevention and mitigation measures are derived in a debriefing session. The game is facilitated by a moderator, and lasts for 3-4 hours. Aim of the game: Each family pursues the objective of serving its own interests and securing its position through appropriate strategies and skilful negotiation, while at the same time optimising use of the water resources in a way that prevents their degradation. The end of the game is open. While the game may end by one or two families dropping out because they can no longer secure their subsistence, it is also possible that the three families succeed in creating a situation that allows them to meet their own needs as well as the requirements for sustainable water use in the long term. Learning objectives The game demonstrates how tension builds up, increases, and finally escalates; it shows how power positions work and alliances are formed; and it enables the players to experience the great significance of mutual agreement and cooperation. During the game and particularly during the debriefing and evaluation session it is important to link experiences made during the game to the players’ real-life experiences, and to discuss these links in the group. The resulting insights will provide a basis for deducing important conflict prevention and transformation measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report addresses speculative parallelism (the assignment of spare processing resources to tasks which are not known to be strictly required for the successful completion of a computation) at the user and application level. At this level, the execution of a program is seen as a (dynamic) tree —a graph, in general. A solution for a problem is a traversal of this graph from the initial state to a node known to be the answer. Speculative parallelism then represents the assignment of resources to múltiple branches of this graph even if they are not positively known to be on the path to a solution. In highly non-deterministic programs the branching factor can be very high and a naive assignment will very soon use up all the resources. This report presents work assignment strategies other than the usual depth-first and breadth-first. Instead, best-first strategies are used. Since their definition is application-dependent, the application language contains primitives that allow the user (or application programmer) to a) indícate when intelligent OR-parallelism should be used; b) provide the functions that define "best," and c) indícate when to use them. An abstract architecture enables those primitives to perform the search in a "speculative" way, using several processors, synchronizing them, killing the siblings of the path leading to the answer, etc. The user is freed from worrying about these interactions. Several search strategies are proposed and their implementation issues are addressed. "Armageddon," a global pruning method, is introduced, together with both a software and a hardware implementation for it. The concepts exposed are applicable to áreas of Artificial Intelligence such as extensive expert systems, planning, game playing, and in general to large search problems. The proposed strategies, although showing promise, have not been evaluated by simulation or experimentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate optimal strategies to defend valuable goods against the attacks of a thief. Given the value of the goods and the probability of success for the thief, we look for the strategy that assures the largest benefit to each player irrespective of the strategy of his opponent. Two complementary approaches are used: agent-based modeling and game theory. It is shown that the compromise between the value of the goods and the probability of success defines the mixed Nash equilibrium of the game, that is compared with the results of the agent-based simulations and discussed in terms of the system parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper examines the video game industry in the perspective of being the paradigm of innovation in digital media and content. In particular, it analyses the response to two main factors that have impacted this industry over the last decade. First, it tracks the evolution of its global market and its emerging geography with the rise of Asia. Second, within this global landscape the paper explores how the changes derived from mobile and on-line gaming enabled major transformations of this industry. From here, some conclusions on the lessons from the evolution of this sector for the whole media and content industries are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) are one of the most important users of wireless communication technologies in the coming years and some challenges in this area must be addressed for their complete development. Energy consumption and spectrum availability are two of the most severe constraints of WSNs due to their intrinsic nature. The introduction of cognitive capabilities into these networks has arisen to face the issue of spectrum scarcity but could be used to face energy challenges too due to their new range of communication possibilities. In this paper a new strategy based on game theory for cognitive WSNs is discussed. The presented strategy improves energy consumption by taking advantage of the new change-communication-channel capability. Based on game theory, the strategy decides when to change the transmission channel depending on the behavior of the rest of the network nodes. The strategy presented is lightweight but still has higher energy saving rates as compared to noncognitive networks and even to other strategies based on scheduled spectrum sensing. Simulations are presented for several scenarios that demonstrate energy saving rates of around 65% as compared to WSNs without cognitive techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proposal highlights certain design strategies and a case study that can link the material urban space to digital emerging realms. The composite nature of urban spaces ?material/ digital- is understood as an opportunity to reconfigure public urban spaces without high-cost, difficult to apply interventions and, furthermore, to reactivate them by inserting dynamic, interactive and playful conditions that engage people and re-establish their relations to the cities. The structuring of coexisting and interconnected material and digital aspects in public urban spaces is proposed through the implementation of hybridization processes. Hybrid spaces can fascinate and provoke the public and especially younger people to get involved and interact with physical aspects of urban public spaces as well as digital representations or interpretations of those. Digital game?s design in urban public spaces can be comprehended as a tool that allows architects to understand and to configure hybrids of material and digital conceptions and project all in one, as an inseparable totality. Digital technologies have for a long time now intervened in our perception of traditional dipoles such as subject - environment. Architects, especially in the past, have been responsible for material mediations and tangible interfaces that permit subjects to relate to their physical environments in a controlled and regulated manner; but, nowadays, architects are compelled to embody in design, the transition that is happening in all aspects of everyday life, that is, from material to digital realities. In addition, the disjunctive relation of material and digital realms is ceding and architects are now faced with the challenge that supposes the merging of both in a single, all-inclusive reality. The case study is a design project for a game implemented simultaneously in a specific urban space and on the internet. This project developed as the spring semester course New Media in Architecture at the Department of Architecture, Democritus University of Thrace, Greece is situated at the city of Xanthi. Composite cities can use design strategies and technological tools to configure augmented and appealing urban spaces that articulate and connect different realms in a single engaging reality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El consumo energético de las Redes de Sensores Inalámbricas (WSNs por sus siglas en inglés) es un problema histórico que ha sido abordado desde diferentes niveles y visiones, ya que no solo afecta a la propia supervivencia de la red sino que el creciente uso de dispositivos inteligentes y el nuevo paradigma del Internet de las Cosas hace que las WSNs tengan cada vez una mayor influencia en la huella energética. Debido a la tendencia al alza en el uso de estas redes se añade un nuevo problema, la saturación espectral. Las WSNs operan habitualmente en bandas sin licencia como son las bandas Industrial, Científica y Médica (ISM por sus siglas en inglés). Estas bandas se comparten con otro tipo de redes como Wi-Fi o Bluetooth cuyo uso ha crecido exponencialmente en los últimos años. Para abordar este problema aparece el paradigma de la Radio Cognitiva (CR), una tecnología que permite el acceso oportunista al espectro. La introducción de capacidades cognitivas en las WSNs no solo permite optimizar su eficiencia espectral sino que también tiene un impacto positivo en parámetros como la calidad de servicio, la seguridad o el consumo energético. Sin embargo, por otra parte, este nuevo paradigma plantea algunos retos relacionados con el consumo energético. Concretamente, el sensado del espectro, la colaboración entre los nodos (que requiere comunicación adicional) y el cambio en los parámetros de transmisión aumentan el consumo respecto a las WSN clásicas. Teniendo en cuenta que la investigación en el campo del consumo energético ha sido ampliamente abordada puesto que se trata de una de sus principales limitaciones, asumimos que las nuevas estrategias deben surgir de las nuevas capacidades añadidas por las redes cognitivas. Por otro lado, a la hora de diseñar estrategias de optimización para CWSN hay que tener muy presentes las limitaciones de recursos de estas redes en cuanto a memoria, computación y consumo energético de los nodos. En esta tesis doctoral proponemos dos estrategias de reducción de consumo energético en CWSNs basadas en tres pilares fundamentales. El primero son las capacidades cognitivas añadidas a las WSNs que proporcionan la posibilidad de adaptar los parámetros de transmisión en función del espectro disponible. La segunda es la colaboración, como característica intrínseca de las CWSNs. Finalmente, el tercer pilar de este trabajo es teoría de juegos como algoritmo de soporte a la decisión, ampliamente utilizado en WSNs debido a su simplicidad. Como primer aporte de la tesis se presenta un análisis completo de las posibilidades introducidas por la radio cognitiva en materia de reducción de consumo para WSNs. Gracias a las conclusiones extraídas de este análisis, se han planteado las hipótesis de esta tesis relacionadas con la validez de usar capacidades cognitivas como herramienta para la reducción de consumo en CWSNs. Una vez presentada las hipótesis, pasamos a desarrollar las principales contribuciones de la tesis: las dos estrategias diseñadas para reducción de consumo basadas en teoría de juegos y CR. La primera de ellas hace uso de un juego no cooperativo que se juega mediante pares de jugadores. En la segunda estrategia, aunque el juego continúa siendo no cooperativo, se añade el concepto de colaboración. Para cada una de las estrategias se presenta el modelo del juego, el análisis formal de equilibrios y óptimos y la descripción de la estrategia completa donde se incluye la interacción entre nodos. Con el propósito de probar las estrategias mediante simulación e implementación en dispositivos reales hemos desarrollado un marco de pruebas compuesto por un simulador cognitivo y un banco de pruebas formado por nodos cognitivos capaces de comunicarse en tres bandas ISM desarrollados en el B105 Lab. Este marco de pruebas constituye otra de las aportaciones de la tesis que permitirá el avance en la investigación en el área de las CWSNs. Finalmente, se presentan y discuten los resultados derivados de la prueba de las estrategias desarrolladas. La primera estrategia proporciona ahorros de energía mayores al 65% comparados con una WSN sin capacidades cognitivas y alrededor del 25% si la comparamos con una estrategia cognitiva basada en el sensado periódico del espectro para el cambio de canal de acuerdo a un nivel de ruido fijado. Este algoritmo se comporta de forma similar independientemente del nivel de ruido siempre que éste sea espacialmente uniformemente. Esta estrategia, a pesar de su sencillez, nos asegura el comportamiento óptimo en cuanto a consumo energético debido a la utilización de teoría de juegos en la fase de diseño del comportamiento de los nodos. La estrategia colaborativa presenta mejoras respecto a la anterior en términos de protección frente al ruido en escenarios de ruido más complejos donde aporta una mejora del 50% comparada con la estrategia anterior. ABSTRACT Energy consumption in Wireless Sensor Networks (WSNs) is a known historical problem that has been addressed from different areas and on many levels. But this problem should not only be approached from the point of view of their own efficiency for survival. A major portion of communication traffic has migrated to mobile networks and systems. The increased use of smart devices and the introduction of the Internet of Things (IoT) give WSNs a great influence on the carbon footprint. Thus, optimizing the energy consumption of wireless networks could reduce their environmental impact considerably. In recent years, another problem has been added to the equation: spectrum saturation. Wireless Sensor Networks usually operate in unlicensed spectrum bands such as Industrial, Scientific, and Medical (ISM) bands shared with other networks (mainly Wi-Fi and Bluetooth). To address the efficient spectrum utilization problem, Cognitive Radio (CR) has emerged as the key technology that enables opportunistic access to the spectrum. Therefore, the introduction of cognitive capabilities to WSNs allows optimizing their spectral occupation. Cognitive Wireless Sensor Networks (CWSNs) do not only increase the reliability of communications, but they also have a positive impact on parameters such as the Quality of Service (QoS), network security, or energy consumption. These new opportunities introduced by CWSNs unveil a wide field in the energy consumption research area. However, this also implies some challenges. Specifically, the spectrum sensing stage, collaboration among devices (which requires extra communication), and changes in the transmission parameters increase the total energy consumption of the network. When designing CWSN optimization strategies, the fact that WSN nodes are very limited in terms of memory, computational power, or energy consumption has to be considered. Thus, light strategies that require a low computing capacity must be found. Since the field of energy conservation in WSNs has been widely explored, we assume that new strategies could emerge from the new opportunities presented by cognitive networks. In this PhD Thesis, we present two strategies for energy consumption reduction in CWSNs supported by three main pillars. The first pillar is that cognitive capabilities added to the WSN provide the ability to change the transmission parameters according to the spectrum. The second pillar is that the ability to collaborate is a basic characteristic of CWSNs. Finally, the third pillar for this work is the game theory as a decision-making algorithm, which has been widely used in WSNs due to its lightness and simplicity that make it valid to operate in CWSNs. For the development of these strategies, a complete analysis of the possibilities is first carried out by incorporating the cognitive abilities into the network. Once this analysis has been performed, we expose the hypotheses of this thesis related to the use of cognitive capabilities as a useful tool to reduce energy consumption in CWSNs. Once the analyses are exposed, we present the main contribution of this thesis: the two designed strategies for energy consumption reduction based on game theory and cognitive capabilities. The first one is based on a non-cooperative game played between two players in a simple and selfish way. In the second strategy, the concept of collaboration is introduced. Despite the fact that the game used is also a non-cooperative game, the decisions are taken through collaboration. For each strategy, we present the modeled game, the formal analysis of equilibrium and optimum, and the complete strategy describing the interaction between nodes. In order to test the strategies through simulation and implementation in real devices, we have developed a CWSN framework composed by a CWSN simulator based on Castalia and a testbed based on CWSN nodes able to communicate in three different ISM bands. We present and discuss the results derived by the energy optimization strategies. The first strategy brings energy improvement rates of over 65% compared to WSN without cognitive techniques. It also brings energy improvement rates of over 25% compared with sensing strategies for changing channels based on a decision threshold. We have also seen that the algorithm behaves similarly even with significant variations in the level of noise while working in a uniform noise scenario. The collaborative strategy presents improvements respecting the previous strategy in terms of noise protection when the noise scheme is more complex where this strategy shows improvement rates of over 50%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examine decision making in two-person extensive form game trees using nine treatments that vary matching protocol, payoffs, and payoff information. Our objective is to establish replicable principles of cooperative versus noncooperative behavior that involve the use of signaling, reciprocity, and backward induction strategies, depending on the availability of dominated direct punishing strategies and the probability of repeated interaction with the same partner. Contrary to the predictions of game theory, we find substantial support for cooperation under complete information even in various single-play treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"April 2000."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we consider dynamic programming for the election timing in the majoritarian parliamentary system such as in Australia, where the government has a constitutional right to call an early election. This right can give the government an advantage to remain in power for as long as possible by calling an election, when its popularity is high. On the other hand, the opposition's natural objective is to gain power, and it will apply controls termed as "boosts" to reduce the chance of the government being re-elected by introducing policy and economic responses. In this paper, we explore equilibrium solutions to the government, and the opposition strategies in a political game using stochastic dynamic programming. Results are given in terms of the expected remaining life in power, call and boost probabilities at each time at any level of popularity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An antagonistic differential game of hyperbolic type with a separable linear vector pay-off function is considered. The main result is the description of all ε-Slater saddle points consisting of program strategies, program ε-Slater maximins and minimaxes for each ε ∈ R^N > for this game. To this purpose, the considered differential game is reduced to find the optimal program strategies of two multicriterial problems of hyperbolic type. The application of approximation enables us to relate these problems to a problem of optimal program control, described by a system of ordinary differential equations, with a scalar pay-off function. It is found that the result of this problem is not changed, if the players use positional or program strategies. For the considered differential game, it is interesting that the ε-Slater saddle points are not equivalent and there exist two ε-Slater saddle points for which the values of all components of the vector pay-off function at one of them are greater than the respective components of the other ε-saddle point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is to survey the game theory modelling of the behaviour of global players in mitigation and adaptation related to climate change. Three main fields are applied for the specific aspects of temperature rise: behaviour games, CPR problem and negotiation games. The game theory instruments are useful in analyzing strategies in uncertain circumstances, such as the occurrence and impacts of climate change. To analyze the international players’ relations, actions, attitude toward carbon emission, negotiation power and motives, several games are applied for the climate change in this paper. The solution is surveyed, too, for externality problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Allocating resources optimally is a nontrivial task, especially when multiple

self-interested agents with conflicting goals are involved. This dissertation

uses techniques from game theory to study two classes of such problems:

allocating resources to catch agents that attempt to evade them, and allocating

payments to agents in a team in order to stabilize it. Besides discussing what

allocations are optimal from various game-theoretic perspectives, we also study

how to efficiently compute them, and if no such algorithms are found, what

computational hardness results can be proved.

The first class of problems is inspired by real-world applications such as the

TOEFL iBT test, course final exams, driver's license tests, and airport security

patrols. We call them test games and security games. This dissertation first

studies test games separately, and then proposes a framework of Catcher-Evader

games (CE games) that generalizes both test games and security games. We show

that the optimal test strategy can be efficiently computed for scored test

games, but it is hard to compute for many binary test games. Optimal Stackelberg

strategies are hard to compute for CE games, but we give an empirically

efficient algorithm for computing their Nash equilibria. We also prove that the

Nash equilibria of a CE game are interchangeable.

The second class of problems involves how to split a reward that is collectively

obtained by a team. For example, how should a startup distribute its shares, and

what salary should an enterprise pay to its employees. Several stability-based

solution concepts in cooperative game theory, such as the core, the least core,

and the nucleolus, are well suited to this purpose when the goal is to avoid

coalitions of agents breaking off. We show that some of these solution concepts

can be justified as the most stable payments under noise. Moreover, by adjusting

the noise models (to be arguably more realistic), we obtain new solution

concepts including the partial nucleolus, the multiplicative least core, and the

multiplicative nucleolus. We then study the computational complexity of those

solution concepts under the constraint of superadditivity. Our result is based

on what we call Small-Issues-Large-Team games and it applies to popular

representation schemes such as MC-nets.