965 resultados para GLUCOSE-TRANSPORTER-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatty acids are the main substrates used by mitochondria to provide myocardial energy under normal conditions. During heart remodeling, however, the fuel preference switches to glucose. In the earlier stages of cardiac remodeling, changes in energy metabolism are considered crucial to protect the heart from irreversible damage. Furthermore, low fatty acid oxidation and the stimulus for glycolytic pathway lead to lipotoxicity, acidosis, and low adenosine triphosphate production. While myocardial function is directly associated with energy metabolism, the metabolic pathways could be potential targets for therapy in heart failure. © 2013 by Lippincott Williams & Wilkins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intrauterine dietary restriction may cause changes in the functioning of offspring organs and systems later in life, an effect known as fetal programming. The present study evaluated mRNA abundance and immunolocalization of nutrient transporters as well as enterocytes proliferation in the proximal, median and distal segments of small intestine of rats born to protein-restricted dams. Pregnant rats were fed hypoproteic (6% protein) or control (17% protein) diets, and offspring rats were evaluated at 3 and 16 weeks of age. The presence of SGLT1 (sodium-glucose co-transporter 1), GLUT2 (glucose transporter 2), PEPT1 (peptide transporter 1) and the intestinal proliferation were evaluated by immunohistochemical techniques and the abundance of specific mRNA for SGLT1, GLUT2 and PEPT1 was assessed by the real-time PCR technique. Rats born to protein-restricted dams showed higher cell proliferation in all intestinal segments and higher gene expression of SGLT1 and PEPT1 in the duodenum. Moreover, in adult animals born to protein-restricted dams the immunoreactivity of SGLT1, GLUT2 and PEPT1in the duodenum was more intense than in control rats. Taken together, the results indicate that changes in the small intestine observed in adulthood can be programmed during the gestation. In addition, they show that this response is caused by both up-regulation in transporter gene expression, a specific adaptation mechanism, and intestinal proliferation, an unspecific adaptation mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionizing radiation is the most recognized risk factor for meningioma in pediatric long-term cancer survivors. Information in this rare setting is exceptional. We report the clinical and cytogenetic findings in a radiation-induced atypical meningioma following treatment for desmoplastic medulloblastoma in a child. This is the second study to describe the cytogenetic aspects on radiation-induced meningiomas in children. Chromosome banding analysis revealed a 46, XX, t(1;3)(p22;q12), del(1)(p?)[8]/46, XX[12]. Loss of chromosome 1p as a consequence of irradiation has been proposed to be more important in the development of secondary meningiomas in adults. Deletions in the short arm of chromosome 1 also appear to be a shared feature in both pediatric cases so far analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A small subset of familial pancreatic endocrine tumors (PET) arises in patients with von Hippel-Lindau syndrome and these tumors may have an adverse outcome compared to other familial PET. Sporadic PET rarely harbors somatic VHL mutations, but the chromosomal location of the VHL gene is frequently deleted in sporadic PET. A subset of sporadic PET shows active hypoxia signals on mRNA and protein level. To identify the frequency of functionally relevant VHL inactivation in sporadic PET and to examine a possible prognostic significance we correlated epigenetic and genetic VHL alterations with hypoxia signals. VHL mutations were absent in all 37 PETs examined. In 2 out of 35 informative PET (6%) methylation of the VHL promoter region was detected and VHL deletion by fluorescence in situ hybridization was found in 14 out of 79 PET (18%). Hypoxia inducible factor 1alpha (HIF1-alpha), carbonic anhydrase 9 (CA-9), and glucose transporter 1 (GLUT-1) protein was expressed in 19, 27, and 30% of the 152 PETs examined. Protein expression of the HIF1-alpha downstream target CA-9 correlated significantly with the expression of CA-9 RNA (P<0.001), VHL RNA (P<0.05), and VHL deletion (P<0.001) as well as with HIF1-alpha (P<0.005) and GLUT-1 immunohistochemistry (P<0.001). These PET with VHL alterations and signs of hypoxia signalling were characterized by a significantly shortened disease-free survival. We conclude that VHL gene impairment by promoter methylation and VHL deletion in nearly 25% of PET leads to the activation of the HIF-pathway. Our data suggest that VHL inactivation and consecutive hypoxia signals may be a mechanism for the development of sporadic PET with an adverse outcome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differentiating 3T3-L1 cells exhibit a dramatic increase in the rate of insulin-stimulated glucose transport during their conversion from proliferating fibroblasts to nonproliferating adipocytes. On day 3 of 3T3-L1 cell differentiation, basal glucose transport and cell surface transferrin binding are markedly diminished. This occurs concomitant with the formation of a distinct insulin-responsive vesicular pool of intracellular glucose transporter 1 (GLUT1) and transferrin receptors as assessed by sucrose velocity gradients. The intracellular distribution of the insulin-responsive aminopeptidase is first readily detectable on day 3, and its gradient profile and response to insulin at this time are identical to that of GLUT1. With further time of differentiation, GLUT4 is expressed and targeted to the same insulin-responsive vesicles as the other three proteins. Our data are consistent with the notion that a distinct insulin-sensitive vesicular cargo compartment forms early during fat call differentiation and its formation precedes GLUT4 expression. The development of this compartment may result from the differentiation-dependent inhibition of constitutive GLUT1 and transferrin receptor trafficking such that there is a large increase in, or the new formation of, a population of postendosomal, insulin-responsive vesicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

von Hippel–Lindau (VHL) disease is a pleomorphic familial tumor syndrome that is characterized by the development of highly vascularized tumors. Homozygous disruption of the VHL gene in mice results in embryonic lethality. To investigate VHL function in the adult we have generated a conditional VHL null allele (2-lox allele) and null allele (1-lox allele) by Cre-mediated recombination in embryonic stem cells. We show here that mice heterozygous for the 1-lox allele develop cavernous hemangiomas of the liver, a rare manifestation of the human disease. Histologically these tumors were associated with hepatocellular steatosis and focal proliferations of small vessels. To study the cellular origin of these lesions we inactivated VHL tissue-specifically in hepatocytes. Deletion of VHL in the liver resulted in severe steatosis, many blood-filled vascular cavities, and foci of increased vascularization within the hepatic parenchyma. These histopathological changes were similar to those seen in livers from mice heterozygous for the 1-lox allele. Hypoxia-inducible mRNAs encoding vascular endothelial growth factor, glucose transporter 1, and erythropoietin were up-regulated. We thus provide evidence that targeted inactivation of mouse VHL can model clinical features of the human disease and underline the importance of the VHL gene product in the regulation of hypoxia-responsive genes in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The brain has enormous anabolic needs during early postnatal development. This study presents multiple lines of evidence showing that endogenous brain insulin-like growth factor 1 (Igf1) serves an essential, insulin-like role in promoting neuronal glucose utilization and growth during this period. Brain 2-deoxy-d- [1-14C]glucose uptake parallels Igf1 expression in wild-type mice and is profoundly reduced in Igf1−/− mice, particularly in those structures where Igf1 is normally most highly expressed. 2-Deoxy-d- [1-14C]glucose is significantly reduced in synaptosomes prepared from Igf1−/− brains, and the deficit is corrected by inclusion of Igf1 in the incubation medium. The serine/threonine kinase Akt/PKB is a major target of insulin-signaling in the regulation of glucose transport via the facilitative glucose transporter (GLUT4) and glycogen synthesis in peripheral tissues. Phosphorylation of Akt and GLUT4 expression are reduced in Igf1−/− neurons. Phosphorylation of glycogen synthase kinase 3β and glycogen accumulation also are reduced in Igf1−/− neurons. These data support the hypothesis that endogenous brain Igf1 serves an anabolic, insulin-like role in developing brain metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examines binding of α- and β-D-glucose in their equilibrium mixture to the glucose transporter (GLUT1) in human erythrocyte membrane preparations by an ^1H NMR method, the transferred NOE (TRNOE). This method is shown theoretically and experimentally to be a sensitive probe of weak ligand-macromolecule interactions. The TRNOEs observed are shown to arise solely from glucose binding to GLUT1. Sites at both membrane faces contribute to the TRNOEs. Binding curves obtained are consistent with a homogeneous class of sugar sites, with an apparent KD which varies (from ~30 mM to ~70 mM for both anomers) depending on the membrane preparation examined. Preparations with a higher proportion of the cytoplasmic membrane face exposed to bulk solution yield higher apparent KKDs. The glucose transport inhibitor cytochalasin B essentially eliminates the TRNOE. Nonlinearity was found in the dependence on sugar concentration of the apparent inhibition constant for cytochalasin B reversal of the TRNOE observed in the α anomer (and probably the β anomer); such nonlinearity implies the existence of ternary complexes of sugar, inhibitor and transporter. The inhibition results furthermore imply the presence of a class of relatively high-affinity (KD < 2mM) sugar sites specific for the α anomer which do not contribute to NMR-observable binding. The presence of two classes of sugar-sensitive cytochalasin B sites is also indicated. These results are compared with predictions of the alternating conformer model of glucose transport. Variation of apparent KD in the NMR-observable sites, the formation of ternary complexes and the presence of an anomer-specific site are shown to be inconsistent with this model. An alternate model is developed which reconciles these results with the known transport behavior of GLUT1. In this model, the transporter possesses (at minimum) three classes of sugar sites: (i) transport sites, which are alternately exposed to the cytoplasmic or the extracellular compartment, but never to both simultaneously, (ii) a class of sites (probably relatively low-affinity) which are confined to one compartment, and (iii) the high-affinity α anomer-specific sites, which are confined to the cytoplasmic compartment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis investigates the mechanisms by which HRG-1 contributes to the invasive and cytoprotective signalling pathways in cancer cells through its effects on VATPase activity and heme transport. Plasma membrane-localised V-ATPase activity correlates with enhanced metastatic potential in cancer cells, which is attributed to extrusion of protons into the extracellular space and activation of pH-sensitive, extracellular matrix degrading-proteases. We found that HRG-1 is co-expressed with the V-ATPase at the plasma membrane of certain aggressive cancer cell types. Modulation of HRG-1 expression altered both the localisation and activity of the VATPase. We also found that HRG-1 enhances trafficking of essential transporters such as the glucose transporter (GLUT-1) in cancer cells, and increases glucose uptake, which is required for cancer cell growth, metabolism and V-ATPase assembly. Heme is potentially cytotoxic, owing to its iron moiety, and therefore the trafficking of heme is tightly controlled in cells. We hypothesised that HRG-1 is required for the transport of heme to intracellular compartments. Importantly, we found that HRG-1 interacts with the heme oxygenases that are necessary for heme catabolism. HRG-1 is also required for trafficking of both heme-bound and nonheme-bound receptors and suppression of HRG-1 results in perturbed receptor trafficking to the lysosome. Suppression of HRG-1 in HeLa cells increases toxic heme accumulation, reactive oxygen species accumulation, and DNA damage resulting in caspasedependent cell death. Mutation of essential heme binding residues in HRG-1 results in decreased heme binding to HRG-1. Interestingly, cells expressing heme-binding HRG-1 mutants exhibit decreased internalisation of the transferrin receptor compared to cells expressing wildtype HRG-1. These findings suggest that HRG- 1/heme trafficking contributes to a hitherto unappreciated aspect of receptormediated endocytosis. Overall, the findings of this thesis show that HRG-1-mediated regulation of intracellular and extracellular pH through V-ATPase activity is essential for a functioning endocytic pathway. This is critical for cells to acquire nutrients such as folate, iron and glucose and to mediate signalling in response to growth factor activation. Thus, HRG-1 facilitates enhanced metabolic activity of cancer cells to enable tumour growth and metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucose-dependent insulinotropic polypeptide (GIP) is an important incretin hormone, which potentiates glucose-induced insulin secretion. Antihyperglycaemic actions of GIP provide significant potential in Type 11 diabetes therapy. However, inactivation of GIP by the enzyme dipeptidyl peptidase IV (DPP IV) and its consequent short circulating half-life limit its therapeutic use. Therefore two novel Tyr(1)-Modified analogues of GIP, N-Fmoc-GIP (where Fmoc is 9-fluorenylmethoxycarbonyl) and N-palmitate-GIP, were synthesized and tested for metabolic stability and biological activity. Both GIP analogues were resistant to degradation by DPP IV and human plasma. In Chinese hamster lung (CHL) cells expressing the cloned human GIP receptor, both analogues exhibited a 2-fold increase in cAMP-generating potency compared with native GIP (EC50 values of 9.4, 10.0 and 18.2 nM respectively). Using clonal BRIN-BD11 cells, both analogues demonstrated strong insulinotropic activity compared with native GIP (P <0.01 to P <0.001). In obese diabetic (ob/ob) mice, administration of N-Fmoc-GIP or N-palmitate-GIP (25 nmol/kg) together with glucose (18 mmol/kg) significantly reduced the peak 15 min glucose excursion (1.4- and 1.5-fold respectively; P <0.05 to P <0.01) compared with glucose alone. The area under the curve (AUC) for glucose was significantly lower after administration of either analogue compared with glucose administered alone or in combination with native GIP (1.5-fold; P <0.05). This was associated with a significantly greater AUC for insulin (2.1-fold; P <0.001) for both analogues compared with native GIP. A similar pattern of in vivo responsiveness was evident in lean control mice. These data indicate that novel N-terminal Tyr(1) modification of GIP with an Fmoc or palmitate group confers resistance to degradation by DPP IV in plasma, which is reflected by increased in vitro potency and greater insulinotropic and antihyperglycaemic activities in an animal model of Type 11 diabetes mellitus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obese AT (adipose tissue) exhibits increased macrophage number. Pro-inflammatory CD16+ peripheral monocyte numbers are also reported to increase with obesity. The present study was undertaken to simultaneously investigate obesity-associated changes in CD16+ monocytes and ATMs (AT macrophages). In addition, a pilot randomized placebo controlled trial using the PPAR (peroxisome-proliferator-activated receptor) agonists, pioglitazone and fenofibrate was performed to determine their effects on CD14+/CD16+ monocytes, ATM and cardiometabolic and adipose dysfunction indices. Obese glucose-tolerant men (n=28) were randomized to placebo, pioglitazone (30 mg/day) and fenofibrate (160 mg/day) for 12 weeks. A blood sample was taken to assess levels of serum inflammatory markers and circulating CD14+/CD16+ monocyte levels via flow cytometry. A subcutaneous AT biopsy was performed to determine adipocyte cell surface and ATM number, the latter was determined via assessment of CD68 expression by IHC (immunohistochemistry) and real-time PCR. Subcutaneous AT mRNA expression of CEBPß (CCAAT enhancer-binding protein ß), SREBP1c (sterol-regulatory-element-binding protein 1c), PPAR?2, IRS-1 (insulin receptor substrate-1), GLUT4 (glucose transporter type 4) and TNFa (tumour necrosis factor a) were also assessed. Comparisons were made between obese and lean controls (n=16) at baseline, and pre- and post-PPAR agonist treatment. Obese individuals had significantly increased adipocyte cell surface, percentage CD14+/CD16+ monocyte numbers and ATM number (all P=0.0001). Additionally, serum TNF-a levels were significantly elevated (P=0.017) and adiponectin levels reduced (total: P=0.0001; high: P=0.022) with obesity. ATM number and percentage of CD14+/CD16+ monocytes correlated significantly (P=0.05). Pioglitazone improved adiponectin levels significantly (P=0.0001), and resulted in the further significant enlargement of adipocytes (P=0.05), without effect on the percentage CD14+/CD16+ or ATM number. Pioglitazone treatment also significantly increased subcutaneous AT expression of CEBPß mRNA. The finding that improvements in obesity-associated insulin resistance following pioglitazone were associated with increased adipocyte cell surface and systemic adiponectin levels, supports the centrality of AT to the cardiometabolic derangement underlying the development of T2D (Type 2 diabetes) and CVD (cardiovascular disease).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physiological secretion of bile acids has previously been linked to the regulation of blood glucose. GLP-1 is an intestinal peptide hormone with important glucose-lowering actions, such as stimulation of insulin secretion and inhibition of glucagon secretion. In this investigation, we assessed the ability of several bile acid compounds to secrete GLP-1 in vitro in STC-1 cells. Bile acids stimulated GLP-1 secretion from 3.3- to 6.2-fold but some were associated with cytolytic effects. Glycocholic and taurocholic acids were selected for in vivo studies in normal and GLP-1R(-/-) mice. Oral glucose tolerance tests revealed that glycocholic acid did not affect glucose excursions. However, taurocholic acid reduced glucose excursions by 40% in normal mice and by 27% in GLP-1R(-/-) mice, and plasma GLP-1 concentrations were significantly elevated 30 min post-gavage. Additional studies used incretin receptor antagonists to probe involvement of GLP-1 and GIP in taurocholic acid-induced glucose lowering. The findings suggest that bile acids partially aid glucose regulation by physiologically enhancing nutrient-induced GLP-1 secretion. However, GLP-1 secretion appears to be only part of the glucose-lowering mechanism and our studies indicate that the other major incretin GIP is not involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Malignant tumors metabolize glucose to lactate even in the presence of oxygen (aerobic glycolysis). The metabolic switch from oxidative glycolysis to non-oxidative fermentation of glucose and proteins performed by the tumor cells seems to be associated with TKTL1 and pAkt overexpression. Therefore the aim of the present study was to investigate the expression of TKTL1 and pAkt in human specimens of endometrial cancer as compared to benign endometrium. Additionally, expression of the glucose transporter GLUT1 was also investigated as aerobic glycolysis is associated with an increased need for glucose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins secreted in response to oral glucose ingestion by intestinal L and K cells, respectively. The molecular mechanisms responsible for intestinal cell glucose sensing are unknown but could be related to those described for beta-cells, brain and hepatoportal sensors. We determined the role of GLUT2, GLP-1 or GIP receptors in glucose-induced incretins secretion, in the corresponding knockout mice. GLP-1 secretion was reduced in all mutant mice, while GIP secretion did not require GLUT2. Intestinal GLP-1 content was reduced only in GIP and GLUT2 receptors knockout mice suggesting that this impairment could contribute to the phenotype. Intestinal GIP content was similar in all mice studied. Furthermore, the impaired incretins secretion was associated with a reduced glucose-stimulated insulin secretion and an impaired glucose tolerance in all mice. In conclusion, both incretins secretion depends on mechanisms involving their own receptors and GLP-1 further requires GLUT2.