966 resultados para GALLIUM-GARNET LASER
Resumo:
The effects of laser phototherapy on the release of growth factors by human gingival fibroblasts were studied in vitro. Cells from a primary culture were irradiated twice (6 h interval), with continuous diode laser [gallium-aluminum-arsenium (GaAlAs), 780 nm, or indium-gallium-aluminum-phosphide (InGaAlP),_660 nm] in punctual and contact mode, 40 mW, spot size 0.042 cm(2), 3 J/cm(2) and 5 J/cm(2) (3 s and 5 s, respectively). Positive [10% fetal bovine serum (FBS)] and negative (1%FBS) controls were not irradiated. Production of keratinocyte growth factor (KGF) and basic fibroblast growth factor (bFGF) was quantified by enzyme-linked immunosorbent assay (ELISA). The data were statistically compared by analysis of variance (ANOVA) followed by Tukey`s test (P a parts per thousand currency signaEuro parts per thousand 0.05). The characterization of the cell line indicated a mesenchymal nature. KGF release was similar in all groups, while that of bFGF was significantly greater (1.49-times) in groups treated with infra-red laser. It was concluded that increased production of bFGF could be one of the mechanisms by which infra-red laser stimulates wound healing.
Resumo:
OBJECTIVE: Although recent experience suggests that transmyocardial laser revascularisation (TMLR) relieves angina, its mechanism of action remains undefined. We examined its functional effects and analysed its morphological features in an animal model of acute ischaemia. METHODS: A total of 15 pigs were randomised to ligation of left marginal arteries (infarction group, n = 5), to TMLR of the left lateral wall using a holmium:yttrium-aluminium garnet (Ho:YAG) laser (laser group, n = 5), and to both (laser-infarction group, n = 5). All the animals were sacrificed 1 month after the procedure. Haemodynamics and echocardiography with segmental wall motion score were carried out at both time intervals (scale 0-3: 0, normal; 1, hypokinesia; 2, akinesia; 3, dyskinesia). Histology of the involved area was analysed. RESULTS: Laser group showed no change of the segmental wall motion score of the involved area 30 min after the laser channels were made (score: 0 +/- 0). Infarction and laser infarction groups both showed a persistent and definitive increase of the segmental wall motion score (at 30 min: 1.6 +/- 0.3 and 2 +/- 0, respectively; at 1 month: 1.8 +/- 0.2 and 1.8 +/- 0.4, respectively). These increases were all statistically significant in comparison with baseline values (P < 0.5), however comparison between infarction and laser-infarction groups showed no significant difference. On macroscopic examination of the endocardial surface, no channel was opened. On histology, there were signs of neovascularisation around the channels in the laser group, whereas in the laser-infarction group the channels were embedded in the infarction scar. CONCLUSIONS: In this acute pig model, TMLR did not provide improvement of contractility of the ischaemic myocardium. To the degree that the present study pertains to the clinical setting, the results suggest that mechanisms other than blood flow through the channels should be considered, such as a laser-induced triggering of neovascularisation or neural destruction.
Resumo:
We present the results of GaInNAs/GaAs quantum dot structures with GaAsN barrier layers grown by solid source molecular beam epitaxy. Extension of the emission wavelength of GaInNAs quantum dots by ~170nm was observed in samples with GaAsN barriers in place of GaAs. However, optimization of the GaAsN barrier layer thickness is necessary to avoid degradation in luminescence intensity and structural property of the GaInNAs dots. Lasers with GaInNAs quantum dots as active layer were fabricated and room-temperature continuous-wave lasing was observed for the first time. Lasing occurs via the ground state at ~1.2μm, with threshold current density of 2.1kA/cm[superscript 2] and maximum output power of 16mW. These results are significantly better than previously reported values for this quantum-dot system.
Resumo:
Success of tooth replantation is limited because part of the replanted tooth is lost because of progressive root resorption. This study used histomorphometry and immunohistochemistry to evaluate the effect of low-level laser therapy (LLLT) on the healing process of rat teeth replanted after different extra-oral periods, simulating immediate and delayed replantation. Sixty Wistar rats (Rattus norvegicus albinus) had their maxillary right incisors extracted and randomly assigned to six groups (n = 10): C4, C30 and C45, in which the teeth were replanted 4 min (immediate), 30 min (delayed) and 45 min (delayed) after extraction, respectively, and L4, L30 and L45, in which the teeth were replanted after the same extra-alveolar times, but the root surfaces and the alveolar wounds were irradiated with a gallium-aluminum-arsenate (GaAlAs) diode laser before replantation. The animals were sacrificed after 60 days. The anatomic pieces containing the replanted teeth were obtained and processed for either histomorphometrical analysis under optical microscopy or immunohistochemical expression of receptor activator of nuclear factor Kappa-B (RANK), and its ligand (RANKL), osteoprotegerin (OPG) and tartrate-resistant acid phosphatase (TRAP) proteins. Areas of external replacement and inflammatory root resorption were observed in all groups, without statistically significant differences (P > 0.05). Ankylosis was more frequent in L30 than in C30 (P < 0.05). RANKL immunostaining predominated over RANK and OPG immunostaining in both groups with immediate tooth replantation (P < 0.05). For the 45-min extra-alveolar time, however, there was greater evidence of RANK immunostaining compared to RANKL for both control and laser-treated groups (P < 0.05). Positive TRAP immunostaining predominated in L4 and L30 (P < 0.05). In conclusion, under the tested conditions, the treatment of the root surface and the alveolar wound with LLLT did not improve the healing process after immediate and delayed tooth replantation in rats.
Resumo:
Objective: The purpose of this study was to evaluate the effect of low-level laser therapy (LLLT) on wound healing process and pain levels after premolar extraction in adolescents. Background data: The advantage of using LLLT in oral surgeries is the reduction of inflammation and postoperative discomfort; however, the optimal dosing parameters and treatment effects in surgical procedures are inconclusive. Methods: A double-blind, randomized, controlled clinical trial was conducted with 14 patients who were to undergo surgical removal of premolars. Patients were randomly allocated to the LLLT (test) group and placebo (control) group. Patients in the test group received 5.1 J (60 J/cm(2)) of energy density of a gallium-aluminum-arsenide (GaAlAs) diode laser (wavelength, 830 nm; output power, 0.1 W) at three different points intraorally, 1 cm from the target tissue immediately and at 48 and 72 h after the surgical procedure. For patients in the placebo group, the laser device was applied to the same points without activating the hand piece. The wound healing process was evaluated by an independent examiner by visual inspection with the support of digital photographs at baseline and 2, 7, and 15 days postoperatively. Patients recorded the degree of pain using the visual analogue scale (VAS). Results: Compared with the placebo group, the test group showed a lower intensity of pain, but this difference was not statistically significant at any time point. The wound healing process was similar in both groups. Conclusions: Within the limitations of this study, the LLLT parameters used neither increased the wound healing process nor significantly decreased pain intensity after premolar extraction in adolescents.
Resumo:
Background: Recently, the erbium-doped:yttrium, aluminum, and garnet (Er:YAG) laser has been used for periodontal therapy. This study compared Er:YAG laser irradiation (100 mJ/pulse, 10 Hz, 12.9 J/cm(2)) with or without conventional scaling and root planing (SRP) to SRP only for the treatment of periodontal pockets affected with chronic periodontitis.Methods: Twenty-one subjects with pockets from 5 to 9 mm in non-adjacent sites were studied. In a split-mouth design, each site was randomly allocated to a treatment group: SRP and laser (SRPL), laser only (L), SRP only (SRP), or no treatment (C). The plaque index (PI), gingival index (GI), bleeding on probing (BOP), and interleukin (IL)-1 beta levels in crevicular fluid were evaluated at baseline and at 12 and 30 days postoperatively, whereas probing depth (PD), gingival recession (GR), and clinical attachment level (CAL) were evaluated at baseline and 30 days after treatment. A statistical analysis was conducted (P<0.05).Results: Twelve days postoperatively, the PI decreased for SRPL and SRP groups (P<0.05); the GI increased for L, SRP, and C groups but decreased for the SRPL group (P<0.05); and BOP decreased for SRPL, L, and SRP groups (P<0.01). Thirty days postoperatively, BOP decreased for treated groups and was lower than the C group (P<0.05). PD decreased in treated groups (P<0.001), and differences were found between SRPL and C groups (P<0.05). CAL gain was significant only for the SRP group (P<0.01). GR increased for SRPL and L groups (P<0.05). No difference in IL-1 beta was detected among groups and periods.Conclusion: Er:YAG laser irradiation may be used as an adjunctive aid for the treatment of periodontal pockets, although a significant CAL gain was observed with SRP alone and not with laser treatment.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective: To study the effect of an 830-nm gallium-aluminum-arsenic (GaAlAs) diode laser at two different energy densities (5 and 15 J/cm(2)) on the epiphyseal cartilage of rats by evaluating bone length and the number of chondrocytes and thickness of each zone of the epiphyseal cartilage. Background Data: Few studies have been conducted on the effects of low-level laser therapy on the epiphyseal cartilage at different irradiation doses. Materials and Methods: A total of 30 male Wistar rats with 23 days of age and weighing 90 g on average were randomly divided into 3 groups: control group (CG, no stimulation), G5 group (energy density, 5 J/cm(2)), and G15 group (energy density, 15 J/cm(2)). Laser treatment sessions were administered every other day for a total of 10 sessions. The animals were killed 24 h after the last treatment session. Histological slides of the epiphyseal cartilage were stained with hematoxylin-eosin (HE), photographed with a Zeiss photomicroscope, and subjected to histometric and histological analyses. Statistical analysis was performed using one-way analysis of variance followed by Tukey's post hoc test. All statistical tests were performed at a significance level of 0.05. Results: Histological analysis and x-ray radiographs revealed an increase in thickness of the epiphyseal cartilage and in the number of chondrocytes in the G5 and G15 groups. Conclusion: The 830-nm GaAlAs diode laser, within the parameters used in this study, induced changes in the thickness of the epiphyseal cartilage and increased the number of chondrocytes, but this was not sufficient to induce changes in bone length.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective: To investigate the healing of bone defects in male rats treated with salmon calcitonin, low-level laser therapy (LLLT), or both. Background: Healing of bone defects still represents a challenge to health professionals in several areas. In this article, the effect of calcitonin in combination with LLLT on bone repair was studied. Densitometry was used as a valuable tool for the measurement of bone regeneration. Methods: Sixty male Wistar rats underwent bilateral castration surgery before the creation of a surgical bone defect. The animals were randomly divided into four groups: control, treated with calcitonin (Ca), treated with LLLT (La), and treated with calcitonin and LLLT (CaLa). Groups Ca and CaLa received 2 IU/kg of synthetic salmon calcitonin intra-muscularly three times a week. Groups La and CaLa received laser therapy using a gallium-aluminum-arsenide laser (10mW, 20 J/cm(2), wavelength 830 nm). Control animals were submitted to sham irradiation. The animals were sacrificed 7, 14, and 21 days after surgery, and bone defects were analyzed using densitometry. Results: The CaLa group had a higher degree of bone regeneration 14 and 21 days after surgery. Conclusions: The La and CaLa had significantly higher bone mineral density than the control and Ca groups.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective: the aim of this study was to evaluate the effectiveness of the clinical use of the gallium-aluminum-arsenium (GaAlAs) laser at the maximum and minimum energies recommended by the manufacturer for the treatment of dentine hypersensitivity.Background Data: Dentine hypersensitivity (DH) is a response to a stimulus that would not usually cause pain in a healthy tooth. It is characterized by sharp pain of short duration from the denuded dentin. Its etiology is unknown. The dentin only begins to show sensitivity when exposed to the buccal environment. This exposure can result after removal of the enamel and/or dental cement, or after root denudation. Different treatments are proposed for this disorder.Materials and Methods: In this study, 25 patients, with a total number of 106 cases of DH, were treated with GaAlAs low-level laser therapy (LLLT). 65% of the teeth were premolars; 14% were incisors and molars; 6.6% were canines. The teeth were irradiated with 3 and 5 J/cm(2) for up to six sessions, with an interval of 72 It between each application, and they were evaluated initially, after each application, and at 15 and 60 days follow-up post-treatment.Results: the treatment was effective in 86.53% and 88.88% of the irradiated teeth, respectively, with the minimum and maximum energy recommended by the manufacturer. There was a statistically significant difference between DH and after a follow-up of 60 days for both groups. The difference among the energy maximum and minimum was not significant.Conclusion: the GaAlAs low-level laser was effective in reducing initial DH. A significant difference was found between initial values of hypersensitivity and after 60 days follow-up post-treatment. No significant difference was found between minimum (3 J/cm(2)) and maximum (5 J/cm(2)) applied energy.
Resumo:
Objective: The aim of this study was to evaluate the effectiveness of the clinical use of the gallium-aluminum-arsenium (GaAlAs) laser at the maximum and minimum energies recommended by the manufacturer for the treatment of dentine hypersensitivity. Background Data: Dentine hypersensitivity (DH) is a response to a stimulus that would not usually cause pain in a healthy tooth. It is characterized by sharp pain of short duration from the denuded dentin. Its etiology is unknown. The dentin only begins to show sensitivity when exposed to the buccal environment. This exposure can result after removal of the enamel and/or dental cement, or after root denudation. Different treatments are proposed for this disorder. Materials and Methods: In this study, 25 patients, with a total number of 106 cases of DH, were treated with GaAlAs low-level laser therapy (LLLT). 65% of the teeth were premolars; 14% were incisors and molars; 6.6% were canines. The teeth were irradiated with 3 and 5 J/cm 2 for up to six sessions, with an interval of 72 h between each application, and they were evaluated initially, after each application, and at 15 and 60 days follow-up post-treatment. Results: The treatment was effective in 86.53% and 88.88% of the irradiated teeth, respectively, with the minimum and maximum energy recommended by the manufacturer. There was a statistically significant difference between DH and after a follow-up of 60 days for both groups. The difference among the energy maximum and minimum was not significant. Conclusion: The GaAlAs low-level laser was effective in reducing initial DH. A significant difference was found between initial values of hypersensitivity and after 60 days follow-up post-treatment. No significant difference was found between minimum (3 J/cm 2) and maximum (5 J/cm 2) applied energy.
Resumo:
The purpose of this in vitro study was to evaluate the effect of neodymium:yttrium-aluminum-garnet (Nd:YAG) laser irradiation on intracanal dentin surface by SEM analysis and its interference in the apical seal of filled canals. After endodontic treatment procedures, 34 maxillary human incisors were randomly assigned to 2 groups. In the negative control group (n=17), no additional treatment was performed and teeth were filled with vertically condensed gutta-percha; in the laser-treated group (n=17), the root canals were irradiated with Nd:YAG laser (1.5 W, 100 mJ, 15 Hz) before filling as described for the control group. Two specimens of each group were prepared for SEM analysis to evaluate the presence and extent of morphological changes and removal of debris; the other specimens were immersed in 0.5% methylene blue dye (pH 7.2) for 24 h for evaluation of the linear dye leakage at the apical third. SEM analysis of the laser-treated group showed dentin fusion and resolidification without smear layer or debris. The Student's t-test showed that the laser-treated group had significantly less leakage in apical third than the control group. Within the limitations of this study, it may be concluded that the morphological changes on the apical intraradicular dentin surface caused by Nd:YAG laser resulted in less linear dye apical leakage.