504 resultados para GABA A
Resumo:
γ-Aminobuttersäure (GABA) ist der wichtigste inhibitorische Neurotransmitter im zentralen Nervensystem und bindet vorrangig an ionotrope GABAA-Rezeptoren. Diese sind an fast allen neuronalen Prozessen beteiligt und werden darüber hinaus mit neurologischen Erkrankungen wie Epilepsie, Angstzuständen, Schlafstörungen und Schizophrenie in Verbindung gebracht. Die PET bietet als molekulares bildgebendes Verfahren die Möglichkeit einzelne Stoffwechselvorgänge des GABAergen Systems zu visualisieren und zu quantifizieren. Durch den Einsatz eines 18F-markierten Radioliganden an die GABA-Bindungsstelle könnten so die Rezeptorverfügbarkeit des GABAA-Rezeptors gemessen und die Ausschüttung des Neurotransmitters GABA quantifiziert werden.rn4-(2-Naphthylmethyl)-5-(piperidin-4-yl)isothiazolole und -isoxazolole stellen aufgrund ihrer hohen Affinität gegenüber der GABA-Bindungsstelle und ihrer lipophilen Struktur vielversprechende Leitstrukturen für die Entwicklung eines PET-Tracers zur Visualisierung der GABA-Bindungsstelle dar. Daher wurden zunächst 19F-substituierte Referenzverbindungen synthetisiert, um diese hinsichtlich ihrer Eignung als Radioligand in in vitro-Studien zu evaluieren. Dazu wurde Fluor direkt sowie über eine Fluorethoxygruppe an Position 1 des Naphthalinrings eingeführt. Zusätzlich wurde ein Fluorethylether eines Isothiazolols als Referenz-verbindung synthetisiert. In anschließenden Verdrängungsstudien wurden die Affinitäten der synthetisierten Verbindungen mit [3H]Muscimol an Membranpräparaten aus Rattenhirnen, sowie transfizierten HEK293-Zellen bestimmt. Zusätzlich wurden die entsprechenden Log D-Werte bestimmt. Die Verbindung 5-(piperidin-4-yl)-4-(1-fluornaphth-2-ylmethyl)-isothiazol-3-ol VK5 zeigte in den in vitro-Studien die vielversprechendsten Ergebnisse (IC50 = 10 nM; Log D = 1,7) und wurde im Folgenden in einer dreistufigen Radiosynthese als 18F-Verbindung synthetisiert.rnZu diesem Zweck wurde ein geeigneter Markierungsvorläufer dargestellt und über eine n.c.a. SNAr-Markierung mit [18F]F- umgesetzt. Die Reaktionsparameter wurden hinsichtlich Reaktionszeit, -temperatur, Basenkonzentration und Lösungsmittel optimiert. Die zur Aktivierung einer SNAr ein-geführte Carbonylfunktion wurde in einem zweiten Schritt mit Triethylsilan/Trifluoressigsäure reduziert. Im finalen Schritt wurden zwei Schutzgruppen mit Bortrichlorid in DCM abgespaltet und [18F]VK5 als injektionsfertige Lösung in isotoner NaCl-Lösung erhalten. Es wurden radiochemische Ausbeuten von 0,7-1 % (EOS) nach einer durchschnittlichen Synthesedauer von 275 Minuten erhalten.rnDer Radioligand [18F]VK5 wurde anschließend in Autoradiographie-Versuchen an Hirnschnitten der Ratte hinsichtlich seiner Spezifität für die GABA-Bindungsstelle untersucht. Die unspezifische Bindung wurde durch die Zugabe von GABA bestimmt wonach kein signifikanter Unterschied festgestellt werden konnte. Die hohe unspezifische Bindung kann möglicherweise auf die niedrigen spezifischen Aktivitäten zurückgeführt werden. Diese lagen, bedingt durch die drei Schritte der Radiosynthese, in einem Bereich von 0,1-0,6 GBq/μmol. Die erhaltenen Ergebnisse lassen für zukünftige Versuche noch einige Optimierungsmöglichkeiten offen. Aufgrund der bisher erhaltenen Daten lässt sich daher keine definitive Aussage über die Eignung des Liganden [18F]VK5 als PET-Tracer treffen.rn
Resumo:
It has been shown in the study that glutamate transporters (EAAT) are capable to modulate GABA transports (GAT). Here we also report that DL-TBOA, a non-transportable glutamate uptake blocker, eliminates GAT-mediated GABA release, while D-aspartate, an EAAT substrate, does not block the latter. The strength or even the operating mode of GABA uptake/release could be influenced by the work of EAATs. Considering the interaction between EAATs and GATs we can conclude that ambient glutamate and GABA levels are mutually dependent. The EAAT-GAT crosstalk observed in this work is mediated by EAAT1 and GAT-2/3. Since both transporters are Na+ dependent and mainly glial, next we investigated the role of [Na+]i in astrocytic-mediated glutamate uptake. We tested whether [Na+]i changes affect paired-pulse plasticity of STCs recorded from cortical layer 2/3 astrocytes. We report that an elevation of [Na+]i induced either by using a high [Na+]i intrapipette solution or by application of GABA slows STCs kinetics and decrease paired-pulse facilitation (PPF) of STCs at short inter-stimulus intervals. Moreover, GAT inhibitors decrease PPF of STCs under control conditions, suggesting that endogenous GABA operating via GATs influences EAAT-mediated transport
Resumo:
Im Rahmen des Promotionsprojektes wurden a1,4,6-enthaltende GABAA-Rezeptoren in den Kombinationen ab3X (X= b3, g2, d) mit Hilfe der Patch-Clamp-Technik charakterisiert. Dazu wurde ein Set an Plasmiden erstellt, welche es erlauben GABAA-Rezeptoren definierter Stöchiometrie und Nachbarschaftsbeziehungen der Untereinheiten (UE) zu exprimieren. In der sogenannten Standardkonfiguration g2baba wurden folgende Resultate erhalten; (1) Assemblierungen, bei denen beide N-Termini der a-UE nicht verlinkt sind, zeigten, dass beide GABA-Bindestellen gleichwertig sind. (2) Die Benzodiazepinpharmakologie wird im Wesentlichen durch die a-UE neben der g2-UE determiniert. (3) Weiterhin wurde gezeigt, dass für eine vollständige Inhibition GABA-induzierter Ströme durch Furosemid eine a4- oder a6-UE unabhängig der Position im Pentamer ausreichend ist. (4) Charakterisierungen mit Etomidat und Loreclezol haben für a4b3g2 Rezeptoren ergeben, dass zwei b3-Untereinheiten im Pentamer vorliegen. (5) Für die b2-selektive Substanz E033-00233 konnte gezeigt werden, dass deren Wirkung unabhängig der Position der b2-UE, aber in Abhängigkeit ihrer Anzahl im Pentamer additiv ist. Insgesamt liefert die Konkatamerstragie eine Möglichkeit die Rolle von einzelnen Untereinheiten in pentameren GABAA-Rezeptoren zu studieren. Um Fehlinterpretationen weitestgehend zu vermeiden sind aber sorgfältige Kontrollen mit unterschiedlichen Linkerpositionen und der Einsatz von UE-selektiven notwendig.
Resumo:
Objective Impaired function of the central gamma-aminobutyric acid (GABA) system, which provides the brain’s major inhibitory pathways, is thought to play an important role in the pathophysiology of anxiety disorders. The effect of acute psychological stress on the human GABA-ergic system is still unknown, however. The purpose of this study was to determine the effect of acute stress on prefrontal GABA levels. Method A recently developed noninvasive magnetic resonance spectroscopy method was used to measure changes in the GABA concentration of the prefrontal cortex in 10 healthy human subjects during a threat-of-shock condition and during a safe condition (two sessions on different days). The main outcome measure was the mean GABA concentration within a 3×3×2-cm3 voxel selected from the medial prefrontal cortex. Results Prefrontal GABA decreased by approximately 18% in the threat-of-shock condition relative to the safe condition. This reduction was specific to GABA, since the concentrations of N-acetyl-aspartate, choline-containing compounds, and glutamate/glutamine levels obtained in the same spectra did not change significantly. Conclusions This result appeared compatible with evidence from preclinical studies in rodents, which showed rapid presynaptic down-regulation of GABA-ergic neurotransmission in response to acute psychological stress. The molecular mechanism and functional significance of this reduced inhibitory effect of acute psychological stress in relation to impaired GABA-ergic function in anxiety disorders merit further investigation.
Resumo:
GABA(A) receptors are the major ionotropic inhibitory neurotransmitter receptors. The endocannabinoid system is a lipid signaling network that modulates different brain functions. Here we show a direct molecular interaction between the two systems. The endocannabinoid 2-arachidonoyl glycerol (2-AG) potentiates GABA(A) receptors at low concentrations of GABA. Two residues of the receptor located in the transmembrane segment M4 of β(2) confer 2-AG binding. 2-AG acts in a superadditive fashion with the neurosteroid 3α, 21-dihydroxy-5α-pregnan-20-one (THDOC) and modulates δ-subunit-containing receptors, known to be located extrasynaptically and to respond to neurosteroids. 2-AG inhibits motility in CB(1)/CB(2) cannabinoid receptor double-KO, whereas β(2)-KO mice show hypermotility. The identification of a functional binding site for 2-AG in the GABA(A) receptor may have far-reaching consequences for the study of locomotion and sedation.
Resumo:
The GABA(A) receptors are the major inhibitory neurotransmitter receptors in mammalian brain. Each isoform consists of five homologous or identical subunits surrounding a central chloride ion-selective channel gated by GABA. How many isoforms of the receptor exist is far from clear. GABA(A) receptors located in the postsynaptic membrane mediate neuronal inhibition that occurs in the millisecond time range; those located in the extrasynaptic membrane respond to ambient GABA and confer long-term inhibition. GABA(A) receptors are responsive to a wide variety of drugs, e.g. benzodiazepines, which are often used for their sedative/hypnotic and anxiolytic effects.
Resumo:
Shine and rise! GABA(A) receptors are ligand-gated chloride ion channels that respond to γ-aminobutyric acid (GABA), which is the major inhibitory neurotransmitter of the mammalian central nervous system. Azobenzene derivatives of propofol, such as compound 1 (see scheme), increase GABA-induced currents in the dark form and lose this property upon light exposure and thus function as photochromic potentiators. Compound 1 can be employed as a light-dependent general anesthetic in translucent tadpoles.
Resumo:
Classical benzodiazepines, such as diazepam, interact with α(x)β(2)γ(2) GABA(A) receptors, x = 1, 2, 3, 5 and modulate their function. Modulation of different receptor isoforms probably results in selective behavioural effects as sedation and anxiolysis. Knowledge of differences in the structure of the binding pocket in different receptor isoforms is of interest for the generation of isoform-specific ligands. We studied here the interaction of the covalently reacting diazepam analogue 3-NCS with α(1)S204Cβ(2)γ(2), α(1)S205Cβ(2)γ(2) and α(1)T206Cβ(2)γ(2) and with receptors containing the homologous mutations in α(2)β(2)γ(2), α(3)β(2)γ(2), α(5)β(1/2)γ(2) and α(6)β(2)γ(2). The interaction was studied using radioactive ligand binding and at the functional level using electrophysiological techniques. Both strategies gave overlapping results. Our data allow conclusions about the relative apposition of α(1)S204Cβ(2)γ(2), α(1)S205Cβ(2)γ(2) and α(1)T206Cβ(2)γ(2) and homologous positions in α(2), α(3), α(5) and α(6) with C-atom adjacent to the keto-group in diazepam. Together with similar data on the C-atom carrying Cl in diazepam, they indicate that the architecture of the binding site for benzodiazepines differs in each GABA(A) receptor isoform α(1)β(2)γ(2), α(2)β(2)γ(2), α(3)β(2)γ(2), α(5)β(1/2)γ(2) and α(6)β(2)γ(2).
Resumo:
Rimonabant (SR141716) and the structurally related AM251 are widely used in pharmacological experiments as selective cannabinoid receptor CB(1) antagonists / inverse agonists. Concentrations of 0.5-10 µM are usually applied in in vitro experiments. We intended to show that these drugs did not act at GABA(A) receptors but found a significant positive allosteric modulation instead.
Resumo:
We show that the five subunits of a gamma-aminobutyric acid type A receptor (GABA(A) receptor) can be concatenated to yield a functional receptor. This concatenated receptor alpha(1)-beta(2)-alpha(1)-gamma(2)-beta(2) has the advantage of a known subunit arrangement. Most of its functional properties are not significantly different from a receptor formed by individual subunits. Extent of expression amounted to about 40% of that of non-concatenated receptors in Xenopus oocytes, after injection of oocytes with comparable amounts of cRNA coding for concatenated and non-concatenated receptors. The ability to express receptors consisting of five subunits enables detailed studies of GABA(A) receptor subtype selective compounds.
Resumo:
The formation of alpha1beta2gamma2epsilon receptors suggests that the epsilon subunit does not displace the single gamma2 subunit in alpha1beta2gamma2 receptors. Thus, epsilon must replace alpha and/or beta subunit(s) if the pentameric receptor structure is to be preserved. To assess the potential for which subunit is replaced in alphabetaepsilon and alphabetagammaepsilon receptors we analyzed the assembly and functional expression of the epsilon subunit with respect to alpha1, beta2 and gamma2 subunits. Using concatenated subunits, we have determined that epsilon is capable of substituting for either (but not both) of the alpha subunits, one of the beta subunits, and possibly the gamma2 subunit. However, the most likely sites at which the epsilon subunit may contribute to receptor function appears to be at position 1 (replaces alpha1) in alphabetagammaepsilon (varepsilon-beta2-alpha1-beta2-gamma2) receptors, or at position 4 (replaces beta2) in alphabetaepsilon (alpha1-beta2-alpha1-varepsilon-beta2) receptors. In both cases, it appears that only a single GABA binding site is present.
Resumo:
Zolpidem is a positive allosteric modulator of GABA(A) receptors with sensitivity to subunit composition. While it acts with high affinity and efficacy at GABA(A) receptors containing the alpha(1) subunit, it has a lower affinity to GABA(A) receptors containing alpha(2), alpha(3), or alpha(5) subunits and has a very weak efficacy at receptors containing the alpha(5) subunit. Here, we show that replacing histidine in position 105 in the alpha(5) subunit by cysteine strongly stimulates the effect of zolpidem in receptors containing the alpha(5) subunit. The side chain volume of the amino acid residue in this position does not correlate with the modulation by zolpidem. Interestingly, serine is not able to promote the potentiation by zolpidem. The homologous residues to alpha(5)H105 in alpha(1), alpha(2), and alpha(3) are well-known determinants of the action of classical benzodiazepines. Other studies have shown that replacement of these histidines alpha(1)H101, alpha(2)H101, and alpha(3)H126 by arginine, as naturally present in alpha(4) and alpha(6), leads to benzodiazepine insensitivity of these receptors. Thus, the nature of the amino acid residue in this position is not only crucial for the action of classical benzodiazepines but in alpha(5) containing receptors also for the action of zolpidem.