978 resultados para G beta 1
Resumo:
1,3-beta-Glucan depolymerizing enzymes have considerable biotechnological applications including biofuel production, feedstock-chemicals and pharmaceuticals. Here we describe a comprehensive functional characterization and low-resolution structure of a hyperthermophilic laminarinase from Thermotoga petrophila (TpLam). We determine TpLam enzymatic mode of operation, which specifically cleaves internal beta-1,3-glucosidic bonds. The enzyme most frequently attacks the bond between the 3rd and 4th residue from the non-reducing end, producing glucose, laminaribiose and laminaritriose as major products. Far-UV circular dichroism demonstrates that TpLam is formed mainly by beta structural elements, and the secondary structure is maintained after incubation at 90 degrees C. The structure resolved by small angle X-ray scattering, reveals a multi-domain structural architecture of a V-shape envelope with a catalytic domain flanked by two carbohydrate-binding modules. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.
Resumo:
Spodoptera frugiperda beta-1,3-glucanase (SLam) was purified from larval midgut. It has a molecular mass of 37.5 kDa, an alkaline optimum pH of 9.0, is active against beta-1,3-glucan (laminarin), but cannot hydrolyze yeast beta-1,3-1,6-glucan or other polysaccharides. The enzyme is an endoglucanase with low processivity (0.4), and is not inhibited by high concentrations of substrate. In contrast to other digestive beta-1,3-glucanases from insects, SLam is unable to lyse Saccharomyces cerevisae cells. The cDNA encoding SLam was cloned and sequenced, showing that the protein belongs to glycosyl hydrolase family 16 as other insect glucanases and glucan-binding proteins. Multiple sequence alignment of beta-1,3-glucanases and beta-glucan-binding protein supports the assumption that the beta-1,3-glucanase gene duplicated in the ancestor of mollusks and arthropods. One copy originated the derived beta-1,3-glucanases by the loss of an extended N-terminal region and the beta-glucan-binding proteins by the loss of the catalytic residues. SLam homology modeling suggests that E228 may affect the ionization of the catalytic residues, thus displacing the enzyme pH optimum. SLam antiserum reacts with a single protein in the insect midgut. Immunocytolocalization shows that the enzyme is present in secretory vesicles and glycocalyx from columnar cells. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The major beta-1,3-glucanase from Tenebrio molitor (TLam) was purified to homogeneity (yield, 6%; enrichment, 113 fold; specific activity, 4.4 U/mg). TLam has a molecular weight of 50 kDa and a pH optimum of 6. It is an encloglucanase that hydrolyzes beta-1,3-glucans as laminarin and yeast beta-1,3-1,6-glucan, but is inactive toward other polysaccharides (as unbranched beta-1,3-glucans or mixed beta-1,3-1,4-glucan from cereals) or disaccharides. The enzyme is not inhibited by high substrate concentrations and has low processivity (0.6). TLam has two ionizable groups involved in catalysis, and His, Tyr and Arg residues plus a divalent ion at the active site. A Cys residue important for TLam activity is exposed after laminarin binding. The cDNA coding for this enzyme was cloned and sequenced. It belongs to glycoside hydrolase family 16, and is related to other insect glucanases and glucan-binding proteins. Sequence analysis and homology modeling allowed the identification of some residues (E174, E179, H204, Y304, R127 and R181) at the active site of the enzyme, which may be important for TLam activity. TLam efficiently lyses fungal cells, suggesting a role in making available walls and cell contents to digestion and in protecting the midgut from pathogen infections. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study aimed to estimate the number of CD8(+) T and natural killer (NK) infiltrating cells and the expression of interleukin-10 (IL-10) and transforming growth factor beta 1 (TGF-beta1) in chemically induced neoplasms in an initiation-promotion bioassay for carcinogenesis. Male Wistar rats were treated with N-nitrosodiethylamine, N-methyl-N-nitrosourea, N-butyl-N-(4-hydroxybutyl) nitrosamine, dihydroxy-di-N-propylnitrosamine, and 1,2-dimethylhydrazine for 4 weeks. Two groups were subsequently exposed through diet to phenobarbital (0.05%) or 2-acetylaminofluorene (0.01%) for 25 weeks. An untreated group was used as a control. Immune cells and cytokines were immunohistochemically evaluated in neoplasms and in surrounding normal tissues at the liver, kidneys, lung, and small and large intestines. When compared to the respective normal tissues, an increased number of NK cells was verified infiltrating the colon, lung, and kidney neoplasms, while the number of CD8+ T cells decreased in the intestine and lung neoplasms. Expression of IL-10 was found mainly in kidney tumors. TGF-beta1 was expressed mainly in the liver and kidneys tumors. The results indicate that the differential occurrence of immune cells between neoplastic and normal tissues could be dependent upon tumor microenvironment.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Barley plants (cultivars Embrapa 127, 128 and 129) treated with xanthan gum, and with different time intervals between the administration of the inducer and the pathogen, demonstrated induction of resistance against Bipolaris sorokiniana. Induction was shown to have local and systemic action. In order to prove the resistance effect, biochemical analyses were performed to quantify proteins and the enzymatic activity of beta-1,3 glucanase. Results demonstrated that barley plants treated with the inducer, showed an increase in the concentration of proteins, as well as in the activity of the enzyme beta-1,3 glucanase, when compared with the extract from healthy plants. In infected plants, protein concentrations decreased and enzymatic activity was lower than in healthy plants. Results suggest that barley plants treated with xanthan gum developed mechanisms responsible for induced resistance, which are still unknown. The most important macromolecule in the defense mechanism was demonstrated to be PR-protein, due to its accumulation and concentration of proteins. However, it may not be the only macromolecule responsible for the resistance effect. (C) 2004 Elsevier SAS. All rights reserved.
Resumo:
Experiments were undertaken to assess the role of amifostine in the activation of latent TGFbeta1 and in the smad proteins cascade (smad 2/3, smad4, smad7), focusing on megakaryocytes, in the bone marrow irradiated in vivo. Non-irradiated megakaryocytes were negative for active TGFbeta1. Immunopositivity to active TGFbeta1 was detected in megakaryocytes 10 days after irradiation in amifostine- treated and untreated marrows. Smad 2/3 and smad 4 were strongly positive in the nucleus of megakaryocytes 10 days after irradiation. At the same time, a predominant hypocellular bone marrow with foci of hematopoiesis was observed with few megakaryocytes. An increase in the number of reticulin fibers was also seen. In amifostine-treated marrows, smad 2/3 and smad4 were not detected in the nucleus but were positive in the cytoplasm of megakaryocytes 10 days after irradiation. Coincidentally, bone marrows were cellular with megakaryocytes. Smad7 immunoexpression was detected in the cytoplasm of megakaryocytes in the non-irradiated, amifostine-treated and in the irradiated, amifostine-treated marrows. Data indicate that amifostine does not prevent latent TGFbeta1 activation in irradiated megakaryocytes. While TGFbeta1 signal transduction occurs in megakaryocytes in untreated bone marrows, it is inhibited in megakaryocytes in amifostine-treated marrows due to the induction of smad 7 activation. This is the first report showing smad 7 activation by amifostine. Our results also suggest a role for TGFbeta1 as an inhibitor of megakaryocytes in vivo. (C) 2002 Wiley-Liss, Inc.
Resumo:
The aims of this study were to evaluate the immunomodulatory role of TGF-beta(1), 1L-10, and INF-gamma in spleen and liver extracts and supernatant cultures of white spleen cells from male symptomatic and asymptomatic dogs, naturally infected by Leishmania (Leishmania) chagasi. Thirty dogs from Aracatuba, São Paulo, Brazil, an endemic leishmaniosis area, were selected by positive ELISA serological reaction for Leishmania sp. and divided into two groups: asymptomatic (n=15) and symptomatic (n=15) consisting of animals with at least three characteristic signs (fever, dermatitis, lymphoadenopathy, onychogryphosis, weight loss, cachex a, locomotion problems, conjunctivitis, epistaxis, hepatosplenomegaly, edema, and apathy). After euthanasia, spleen and liver fragments were collected for ex vivo quantification of TGF-beta(1), IL-10, and INF-gamma. Naturally active in vitro produced TGF-beta(1) was also evaluated in spleen cell culture supernatant. Spleen and liver extract of asymptomatic dogs had higher mean TGF-beta(1) levels than symptomatic dogs. High concentrations of IL-10 were found in spleen, and mainly in liver extract of both groups. Higher INF-gamma concentrations were found in spleen extracts of symptomatic dogs, and in liver extracts of asymptomatic dogs. Extract of this cytokire was lower in spleen extract. Although INF-gamma is being produced in canine infection, mean levels of TGF-beta(1) and IL-10 from spleen and liver extracts were quantitatively much higher; suggesting that immune response in both asymptomatic and symptomatic dogs A as predominantly type Th2. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background. The mechanisms underlying pleural inflammation and pleurodesis are poorly understood. We hypothesized that the cytokines transforming growth factor beta (TGF beta 1) and vascular endothelial growth factor (VEGF) play a major role in pleurodesis after intrapleural silver nitrate (SN) injection. Method. Forty rabbits received intrapleurally 0.5% SN alone or 0.5% SN + anti-TGF beta 1, anti-IL-8, or anti-VEGF. After 28 days, the animals were euthanized and macroscopic pleural adhesions, microscopic pleural fibrosis, and collagen deposition were analyzed for characterization of the degree of pleurodesis (scores 0-4). Results. Scores of pleural adhesions, pleural fibrosis, total collagen, and thin collagen fibers deposition after 28 days were significantly lower for 0.5% SN + anti-TGF beta 1 and 0.5% SN + anti-VEGF. Significant correlations were found between macroscopic adhesion and microscopic pleural fibrosis with total collagen and thin collagen fibers. Conclusions. We conclude that both TGF beta 1 and VEGF, but not IL-8, mediate the pleural inflammatory response and pleurodesis induced by SN.