985 resultados para Fuzzy Inference


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, the problem of maintaining the (global) monotonicity and local monotonicity properties between the input(s) and the output of an FIS model is addressed. This is known as the monotone fuzzy modeling problem. In our previous work, this problem has been tackled by developing some mathematical conditions for an FIS model to observe the monotonicity property. These mathematical conditions are used as a set of governing equations for undertaking FIS modeling problems, and have been extended to some advanced FIS modeling techniques. Here, we examine an alternative to the monotone fuzzy modeling problem by introducing a monotonicity index. The monotonicity index is employed as an approximate indicator to measure the fulfillment of an FIS model to the monotonicity property. It allows the FIS model to be constructed using an optimization method, or be tuned to achieve a better performance, without knowing the exact mathematical conditions of the FIS model to satisfy the monotonicity property. Besides, the monotonicity index can be extended to FIS modeling that involves the local monotonicity problem. We also analyze the relationship between the FIS model and its monotonicity property fulfillment, as well as derived mathematical conditions, using the Monte Carlo method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Healthcare plays an important role in promoting the general health and well-being of people around the world. The difficulty in healthcare data classification arises from the uncertainty and the high-dimensional nature of the medical data collected. This paper proposes an integration of fuzzy standard additive model (SAM) with genetic algorithm (GA), called GSAM, to deal with uncertainty and computational challenges. GSAM learning process comprises three continual steps: rule initialization by unsupervised learning using the adaptive vector quantization clustering, evolutionary rule optimization by GA and parameter tuning by the gradient descent supervised learning. Wavelet transformation is employed to extract discriminative features for high-dimensional datasets. GSAM becomes highly capable when deployed with small number of wavelet features as its computational burden is remarkably reduced. The proposed method is evaluated using two frequently-used medical datasets: the Wisconsin breast cancer and Cleveland heart disease from the UCI Repository for machine learning. Experiments are organized with a five-fold cross validation and performance of classification techniques are measured by a number of important metrics: accuracy, F-measure, mutual information and area under the receiver operating characteristic curve. Results demonstrate the superiority of the GSAM compared to other machine learning methods including probabilistic neural network, support vector machine, fuzzy ARTMAP, and adaptive neuro-fuzzy inference system. The proposed approach is thus helpful as a decision support system for medical practitioners in the healthcare practice.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper proposes a combination of fuzzy standard additive model (SAM) with wavelet features for medical diagnosis. Wavelet transformation is used to reduce the dimension of high-dimensional datasets. This helps to improve the convergence speed of supervised learning process of the fuzzy SAM, which has a heavy computational burden in high-dimensional data. Fuzzy SAM becomes highly capable when deployed with wavelet features. This combination remarkably reduces its computational training burden. The performance of the proposed methodology is examined for two frequently used medical datasets: the lump breast cancer and heart disease. Experiments are deployed with a five-fold cross validation. Results demonstrate the superiority of the proposed method compared to other machine learning methods including probabilistic neural network, support vector machine, fuzzy ARTMAP, and adaptive neuro-fuzzy inference system. Faster convergence but higher accuracy shows a win-win solution of the proposed approach.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A search in the literature reveals that mathematical conditions (usually sufficient conditions) for the Fuzzy Inference System (FIS) models to satisfy the monotonicity property have been developed. A monotonically-ordered fuzzy rule base is important to maintain the monotonicity property of an FIS. However, it may difficult to obtain a monotonically-ordered fuzzy rule base in practice. We have previously introduced the idea of fuzzy rule relabeling to tackle this problem. In this paper, we further propose a monotonicity index for the FIS system, which serves as a metric to indicate the degree of a fuzzy rule base fulfilling the monotonicity property. The index is useful to provide an indication whether a fuzzy rule base should (or should not) be used in practice, even with fuzzy rule relabeling. To illustrate the idea, the zero-order Sugeno FIS model is exemplified. We add noise as errors into the fuzzy rule base to formulate a set of non-monotone fuzzy rules. As such, the metric also acts as a measure of noise in the fuzzy rule base. The results show that the proposed metric is useful to indicate the degree of a fuzzy rule base fulfilling the monotonicity property.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The nonlinear, noisy and outlier characteristics of electroencephalography (EEG) signals inspire the employment of fuzzy logic due to its power to handle uncertainty. This paper introduces an approach to classify motor imagery EEG signals using an interval type-2 fuzzy logic system (IT2FLS) in a combination with wavelet transformation. Wavelet coefficients are ranked based on the statistics of the receiver operating characteristic curve criterion. The most informative coefficients serve as inputs to the IT2FLS for the classification task. Two benchmark datasets, named Ia and Ib, downloaded from the brain-computer interface (BCI) competition II, are employed for the experiments. Classification performance is evaluated using accuracy, sensitivity, specificity and F-measure. Widely-used classifiers, including feedforward neural network, support vector machine, k-nearest neighbours, AdaBoost and adaptive neuro-fuzzy inference system, are also implemented for comparisons. The wavelet-IT2FLS method considerably dominates the comparable classifiers on both datasets, and outperforms the best performance on the Ia and Ib datasets reported in the BCI competition II by 1.40% and 2.27% respectively. The proposed approach yields great accuracy and requires low computational cost, which can be applied to a real-time BCI system for motor imagery data analysis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper introduces an automated medical data classification method using wavelet transformation (WT) and interval type-2 fuzzy logic system (IT2FLS). Wavelet coefficients, which serve as inputs to the IT2FLS, are a compact form of original data but they exhibits highly discriminative features. The integration between WT and IT2FLS aims to cope with both high-dimensional data challenge and uncertainty. IT2FLS utilizes a hybrid learning process comprising unsupervised structure learning by the fuzzy c-means (FCM) clustering and supervised parameter tuning by genetic algorithm. This learning process is computationally expensive, especially when employed with high-dimensional data. The application of WT therefore reduces computational burden and enhances performance of IT2FLS. Experiments are implemented with two frequently used medical datasets from the UCI Repository for machine learning: the Wisconsin breast cancer and Cleveland heart disease. A number of important metrics are computed to measure the performance of the classification. They consist of accuracy, sensitivity, specificity and area under the receiver operating characteristic curve. Results demonstrate a significant dominance of the wavelet-IT2FLS approach compared to other machine learning methods including probabilistic neural network, support vector machine, fuzzy ARTMAP, and adaptive neuro-fuzzy inference system. The proposed approach is thus useful as a decision support system for clinicians and practitioners in the medical practice. copy; 2015 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper introduces an approach to classify EEG signals using wavelet transform and a fuzzy standard additive model (FSAM) with tabu search learning mechanism. Wavelet coefficients are ranked based on statistics of the Wilcoxon test. The most informative coefficients are assembled to form a feature set that serves as inputs to the tabu-FSAM. Two benchmark datasets, named Ia and Ib, downloaded from the brain-computer interface (BCI) competition II are employed for the experiments. Classification performance is evaluated using accuracy, mutual information, Gini coefficient and F-measure. Widely-used classifiers, including feedforward neural network, support vector machine, k-nearest neighbours, ensemble learning Adaboost and adaptive neuro-fuzzy inference system, are also implemented for comparisons. The proposed tabu-FSAM method considerably dominates the competitive classifiers, and outperforms the best performance on the Ia and Ib datasets reported in the BCI competition II.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An approach to EEG signal classification for brain-computer interface (BCI) application using fuzzy standard additive model is introduced in this paper. The Wilcoxon test is employed to rank wavelet coefficients. Top ranking wavelets are used to form a feature set that serves as inputs to the fuzzy classifiers. Experiments are carried out using two benchmark datasets, Ia and Ib, downloaded from the BCI competition II. Prevalent classifiers including feedforward neural network, support vector machine, k-nearest neighbours, ensemble learning Adaboost and adaptive neuro-fuzzy inference system are also implemented for comparisons. Experimental results show the dominance of the proposed method against competing approaches.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a novel design of interval type-2 fuzzy logic systems (IT2FLS) by utilizing the theory of extreme learning machine (ELM) for electricity load demand forecasting. ELM has become a popular learning algorithm for single hidden layer feed-forward neural networks (SLFN). From the functional equivalence between the SLFN and fuzzy inference system, a hybrid of fuzzy-ELM has gained attention of the researchers. This paper extends the concept of fuzzy-ELM to an IT2FLS based on ELM (IT2FELM). In the proposed design the antecedent membership function parameters of the IT2FLS are generated randomly, whereas the consequent part parameters are determined analytically by the Moore-Penrose pseudo inverse. The ELM strategy ensures fast learning of the IT2FLS as well as optimality of the parameters. Effectiveness of the proposed design of IT2FLS is demonstrated with the application of forecasting nonlinear and chaotic data sets. Nonlinear data of electricity load from the Australian National Electricity Market for the Victoria region and from the Ontario Electricity Market are considered here. The proposed model is also applied to forecast Mackey-glass chaotic time series data. Comparative analysis of the proposed model is conducted with some traditional models such as neural networks (NN) and adaptive neuro fuzzy inference system (ANFIS). In order to verify the structure of the proposed design of IT2FLS an alternate design of IT2FLS based on Kalman filter (KF) is also utilized for the comparison purposes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In last decades, neural networks have been established as a major tool for the identification of nonlinear systems. Among the various types of networks used in identification, one that can be highlighted is the wavelet neural network (WNN). This network combines the characteristics of wavelet multiresolution theory with learning ability and generalization of neural networks usually, providing more accurate models than those ones obtained by traditional networks. An extension of WNN networks is to combine the neuro-fuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) structure with wavelets, leading to generate the Fuzzy Wavelet Neural Network - FWNN structure. This network is very similar to ANFIS networks, with the difference that traditional polynomials present in consequent of this network are replaced by WNN networks. This paper proposes the identification of nonlinear dynamical systems from a network FWNN modified. In the proposed structure, functions only wavelets are used in the consequent. Thus, it is possible to obtain a simplification of the structure, reducing the number of adjustable parameters of the network. To evaluate the performance of network FWNN with this modification, an analysis of network performance is made, verifying advantages, disadvantages and cost effectiveness when compared to other existing FWNN structures in literature. The evaluations are carried out via the identification of two simulated systems traditionally found in the literature and a real nonlinear system, consisting of a nonlinear multi section tank. Finally, the network is used to infer values of temperature and humidity inside of a neonatal incubator. The execution of such analyzes is based on various criteria, like: mean squared error, number of training epochs, number of adjustable parameters, the variation of the mean square error, among others. The results found show the generalization ability of the modified structure, despite the simplification performed

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes the design, implementation and enforcement of a system for industrial process control based on fuzzy logic and developed using Java, with support for industrial communication protocol through the OPC (Ole for Process Control). Besides the java framework, the software is completely independent from other platforms. It provides friendly and functional tools for modeling, construction and editing of complex fuzzy inference systems, and uses these logical systems in control of a wide variety of industrial processes. The main requirements of the developed system should be flexibility, robustness, reliability and ease of expansion

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Induction motors are one of the most important equipment of modern industry. However, in many situations, are subject to inadequate conditions as high temperatures and pressures, load variations and constant vibrations, for example. Such conditions, leaving them more susceptible to failures, either external or internal in nature, unwanted in the industrial process. In this context, predictive maintenance plays an important role, where the detection and diagnosis of faults in a timely manner enables the increase of time of the engine and the possibiity of reducing costs, caused mainly by stopping the production and corrective maintenance the motor itself. In this juncture, this work proposes the design of a system that is able to detect and diagnose faults in induction motors, from the collection of electrical line voltage and current, and also the measurement of engine speed. This information will use as input to a fuzzy inference system based on rules that find and classify a failure from the variation of thess quantities

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)