945 resultados para Full Hiding
Resumo:
This paper presents a systematic construction of high-rate and full-diversity space-frequency block codes for MIMO-OFDM systems. While all prior constructions offer only a maximum rate of one complex symbol per channel use, our construction yields rate equal to the number of transmit antennas and simultaneously achieves full-diversity. The proposed construction works for arbitrary number of transmit antennas and arbitrary channel power delay profile. A key step in this construction is the generalization of the stacked matrix code design criteria given by Bolcskei et.al., (IEEE WCNC 2000). Explicit equivalence of our generalized code design criteria with the Hadamard-product based criteria of W. Su et.al., (lEEE Trans. Sig. Proc. Nov 2003) is established and new high-rate codes are constructed using our criteria.
Resumo:
A switched rectifier DC voltage source three-level neutral-point-clamped (NPC) converter topology is proposed here to alleviate the inverter from capacitor voltage balancing in three-level drive systems. The proposed configuration requires only one DC link with a voltage of half of that needed in a conventional NPC inverter. To obtain a rated DC link voltage, the rectifier DC source is alternately connected in parallel to one of the two series capacitors using two switches and two diodes with device voltage ratings of half the total DC bus voltage. The frequency at which the voltage source is switched is independent of the inverter and will not affect its operation since the switched voltage source in this configuration balances the capacitors automatically. The proposed configuration can also be used as a conventional two-level inverter in the lower modulation index range, thereby increasing the reliability of the drivesystem. A space-vector-based PWM scheme is used to verify this proposed topology on a laboratory system.
Resumo:
This paper considers the dynamic modelling and motion control of a Surface Effect Ship (SES) for safer transfer of personnel and equipment from vessel to-and-from an offshore wind-turbine. The control system designed is referred to as Boarding Control System (BCS). The performance of this system is investigated for a specific wind-farm service vessel—The Wave Craft. On a SES, the pressurized air cushion supports the majority of the weight of the vessel. The control problem considered relates to the actuation of the pressure such that wave-induced vessel motions are minimized. Results are given through simulation, model- and full-scale experimental testing.
Resumo:
The problem of designing high rate, full diversity noncoherent space-time block codes (STBCs) with low encoding and decoding complexity is addressed. First, the notion of g-group encodable and g-group decodable linear STBCs is introduced. Then for a known class of rate-1 linear designs, an explicit construction of fully-diverse signal sets that lead to four-group encodable and four-group decodable differential scaled unitary STBCs for any power of two number of antennas is provided. Previous works on differential STBCs either sacrifice decoding complexity for higher rate or sacrifice rate for lower decoding complexity.
Resumo:
Use of precoding transforms such as Hadamard Transforms and Phase Alteration for Peak to Average Power Ratio (PAPR) reduction in OFDM systems are well known. In this paper we propose use of Inverse Discrete Fourier Transform (IDFT) and Hadamard transform as precoding transforms in MIMO-OFDM systems to achieve low peak to average power ratio (PAPR). We show that while our approach using IDFT does not disturb the diversity gains of the MIMO-OFDM systems (spatial, temporal and frequency diversity gains), it offers a better trade-off between PAPR reduction and ML decoding complexity compared to that of the Hadamard transform precoding. We study in detail the amount of PAPR reduction achieved for the following two recently proposed full-diversity Space-Frequency coded MIMO-OFDM systems using both the IDFT and the Hadamard transform: (i) W. Su. Z. Safar, M. Olfat, K. J. R. Liu (IEEE Trans. on Signal Processing, Nov. 2003), and (ii) W. Su, Z. Safar, K. J. R. Liu (IEEE Trans. on Information Theory, Jan. 2005).
Resumo:
We respond to Dikpati et al.'s criticism of our recent solar dynamo model. A different treatment of the magnetic buoyancy is the most probable reason for their different results.
A Low ML-Decoding Complexity, High Coding Gain, Full-Rate, Full-Diversity STBC for 4 x 2 MIMO System
Resumo:
This paper proposes a full-rate, full-diversity space-time block code(STBC) with low maximum likelihood (ML) decoding complexity and high coding gain for the 4 transmit antenna, 2 receive antenna (4 x 2) multiple-input multiple-output (MIMO) system that employs 4/16-QAM. For such a system, the best code known is the DjABBA code and recently, Biglieri, Hong and Viterbo have proposed another STBC (BHV code) for 4-QAM which has lower ML-decoding complexity than the DjABBA code but does not have full-diversity like the DjABBA code. The code proposed in this paper has the same ML-decoding complexity as the BHV code for any square M-QAM but has full-diversity for 4- and 16-QAM. Compared with the DjABBA code, the proposed code has lower ML-decoding complexity for square M-QAM constellation, higher coding gain for 4- and 16-QAM, and hence a better codeword error rate (CER) performance. Simulation results confirming this are presented.
Resumo:
The no-hiding theorem says that if any physical process leads to bleaching of quantum information from the original system, then it must reside in the rest of the Universe with no information being hidden in the correlation between these two subsystems. Here, we report an experimental test of the no-hiding theorem with the technique of nuclear magnetic resonance. We use the quantum state randomization of a qubit as one example of the bleaching process and show that the missing information can be fully recovered up to local unitary transformations in the ancilla qubits.
Resumo:
For an n(t) transmit, n(r) receive antenna system (n(t) x nr system), a full-rate space time block code (STBC) transmits min(n(t), n(r)) complex symbols per channel use. In this paper, a scheme to obtain a full-rate STBC for 4 transmit antennas and any n(r), with reduced ML-decoding complexity is presented. The weight matrices of the proposed STBC are obtained from the unitary matrix representations of a Clifford Algebra. By puncturing the symbols of the STBC, full rate designs can be obtained for n(r) < 4. For any value of n(r), the proposed design offers the least ML-decoding complexity among known codes. The proposed design is comparable in error performance to the well known Perfect code for 4 transmit antennas while offering lower ML-decoding complexity. Further, when n(r) < 4, the proposed design has higher ergodic capacity than the punctured Perfect code. Simulation results which corroborate these claims are presented.
Resumo:
This paper presents a low-ML-decoding-complexity, full-rate, full-diversity space-time block code (STBC) for a 2 transmit antenna, 2 receive antenna multiple-input multiple-output (MIMO) system, with coding gain equal to that of the best and well known Golden code for any QAM constellation. Recently, two codes have been proposed (by Paredes, Gershman and Alkhansari and by Sezginer and Sari), which enjoy a lower decoding complexity relative to the Golden code, but have lesser coding gain. The 2 x 2 STBC presented in this paper has lesser decoding complexity for non-square QAM constellations, compared with that of the Golden code, while having the same decoding complexity for square QAM constellations. Compared with the Paredes-Gershman-Alkhansari and Sezginer-Sari codes, the proposed code has the same decoding complexity for non-rectangular QAM constellations. Simulation results, which compare the codeword error rate (CER) performance, are presented.
Resumo:
Purpose - There are many library automation packages available as open-source software, comprising two modules: staff-client module and online public access catalogue (OPAC). Although the OPAC of these library automation packages provides advanced features of searching and retrieval of bibliographic records, none of them facilitate full-text searching. Most of the available open-source digital library software facilitates indexing and searching of full-text documents in different formats. This paper makes an effort to enable full-text search features in the widely used open-source library automation package Koha, by integrating it with two open-source digital library software packages, Greenstone Digital Library Software (GSDL) and Fedora Generic Search Service (FGSS), independently. Design/methodology/approach - The implementation is done by making use of the Search and Retrieval by URL (SRU) feature available in Koha, GSDL and FGSS. The full-text documents are indexed both in Koha and GSDL and FGSS. Findings - Full-text searching capability in Koha is achieved by integrating either GSDL or FGSS into Koha and by passing an SRU request to GSDL or FGSS from Koha. The full-text documents are indexed both in the library automation package (Koha) and digital library software (GSDL, FGSS) Originality/value - This is the first implementation enabling the full-text search feature in a library automation software by integrating it into digital library software.
Resumo:
Recently, Guo and Xia gave sufficient conditions for an STBC to achieve full diversity when a PIC (Partial Interference Cancellation) or a PIC-SIC (PIC with Successive Interference Cancellation) decoder is used at the receiver. In this paper, we give alternative conditions for an STBC to achieve full diversity with PIC and PIC-SIC decoders, which are equivalent to Guo and Xia's conditions, but are much easier to check. Using these conditions, we construct a new class of full diversity PIC-SIC decodable codes, which contain the Toeplitz codes and a family of codes recently proposed by Zhang, Xu et. al. as proper subclasses. With the help of the new criteria, we also show that a class of PIC-SIC decodable codes recently proposed by Zhang, Shi et. al. can be decoded with much lower complexity than what is reported, without compromising on full diversity.
Resumo:
We consider a time division duplex multiple-input multiple-output (nt × nr MIMO). Using channel state information (CSI) at the transmitter, singular value decomposition (SVD) of the channel matrix is performed. This transforms the MIMO channel into parallel subchannels, but has a low overall diversity order. Hence, we propose X-Codes which achieve a higher diversity order by pairing the subchannels, prior to SVD preceding. In particular, each pair of information symbols is encoded by a fixed 2 × 2 real rotation matrix. X-Codes can be decoded using nr very low complexity two-dimensional real sphere decoders. Error probability analysis for X-Codes enables us to choose the optimal pairing and the optimal rotation angle for each pair. Finally, we show that our new scheme outperforms other low complexity precoding schemes.