883 resultados para Fossil Fuels


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The basic principles of operation of gas sensors based on solid-state galvanic cells are described. The polarisation of the electrodes can be minimised by the use of point electrodes made of the solid electrolyte, the use of a reference system with chemical potential close to that of the sample system and the use of graded condensed phase reference electrodes. Factors affecting the speed of response of galvanic sensors in equilibrium and non-equilibrium gas mixtures are considered with reference to products of combustion of fossil fuels. An expression for the emf of non-isothermal galvanic sensors and the criterion for the design of temperature compensated reference electrodes for non-isothermal galvanic sensors are briefly outlined. Non-isothermal sensors are useful for the continuous monitoring of concentrations or chemical potentials in reactive systems at high temperatures. Sensors for oxygen, carbon, and alloying elements (Zn and Si) in liquid metals and alloys are discussed. The use of auxiliary electrodes permits the detection of chemical species in the gas phase which are not mobile in the solid electrolyte. Finally, the cause of common errors in galvanic measurements, and tests for correct functioning of galvanic sensors are given. 60 ref.--AA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Finnish forest industry is in the middle of a radical change. Deepening recession and the falling demand of woodworking industry´s traditional products have forced also sawmilling industry to find new and more fertile solutions to improve their operational preconditions. In recent years, the role of bioenergy production has often been highlighted as a part of sawmills´ business repertoire. Sawmilling produces naturally a lot of by-products (e.g. bark, sawdust, chips) which could be exploited more effectively in energy production, and this would bring more incomes or maybe even create new business opportunities for sawmills. Production of bioenergy is also supported by government´s climate and energy policies favouring renewable energy sources, public financial subsidies, and soaring prices of fossil fuels. Also the decreasing production of domestic pulp and paper industry releases a fair amount of sawmills´ by-products for other uses. However, bioenergy production as a part of sawmills´ by-product utilization has been so far researched very little from a managerial point of view. The purpose of this study was to explore the relative significance of the main bioenergy-related processes, resources and factors at Finnish independent industrial sawmills including partnerships, cooperation, customers relationships and investments, and also the future perspectives of bioenergy business at these sawmills with the help of two resource-based approaches (resource-based view, natural-resource-based view). Data of the study comprised of secondary data (e.g. literature), and primary data which was attracted from interviews directed to sawmill managers (or equivalent persons in charge of decisions regarding bioenergy production at sawmill). While a literature review and the Delphi method with two questionnaires were utilized as the methods of the study. According to the results of the study, the most significant processes related to the value chain of bioenergy business are connected to raw material availability and procurement, and customer relationships management. In addition to raw material and services, the most significant resources included factory and machinery, personnel, collaboration, and geographic location. Long-term cooperation deals were clearly valued as the most significant form of collaboration, and especially in processes connected to raw material procurement. Study results also revealed that factors related to demand, subsidies and prices had highest importance in connection with sawmills´ future bioenergy business. However, majority of the respondents required that certain preconditions connected to the above-mentioned factors should be fulfilled before they will continue their bioenergy-related investments. Generally, the answers showed a wide divergence of opinions among the respondents which may refer to sawmills´ different emphases and expectations concerning bioenergy. In other words, bioenergy is still perceived as a quite novel and risky area of business at Finnish independent industrial sawmills. These results indicate that the massive expansion of bioenergy business at private sawmills in Finland is not a self-evident truth. The blocking barriers seem to be connected mainly to demand of bioenergy and money. Respondents´ answers disseminated a growing dissatisfaction towards the policies of authorities, which don´t treat equally sawmill-based bioenergy compared to other forms of bioenergy. This proposition was boiled down in a sawmill manager´s comment: “There is a lot of bioenergy available, if they just want to make use of it.” It seems that the positive effects of government´s policies favouring the renewables are not taking effect at private sawmills. However, as there anyway seems to be a lot of potential connected to emerging bioenergy business at Finnish independent industrial sawmills, there is also a clear need for more profound future studies over this topic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

‪This dissertation examines the impacts of energy and climate policies on the energy and forest sectors, focusing on the case of Finland. The thesis consists of an introduction article and four separate studies. The dissertation was motivated by the climate concern and the increasing demand of renewable energy. In particular, the renewable energy consumption and greenhouse gas emission reduction targets of the European Union were driving this work. In Finland, both forest and energy sectors are in key roles in achieving these targets. In fact, the separation between forest and energy sector is diminishing as the energy sector is utilizing increasing amounts of wood in energy production and as the forest sector is becoming more and more important energy producer.‬ ‪The objective of this dissertation is to find out and measure the impacts of climate and energy policies on the forest and energy sectors. In climate policy, the focus is on emissions trading, and in energy policy the dissertation focuses on the promotion of renewable forest-based energy use. The dissertation relies on empirical numerical models that are based on microeconomic theory. Numerical partial equilibrium mixed complementarity problem models were constructed to study the markets under scrutiny. The separate studies focus on co-firing of wood biomass and fossil fuels, liquid biofuel production in the pulp and paper industry, and the impacts of climate policy on the pulp and paper sector.‬ ‪The dissertation shows that the policies promoting wood-based energy may have have unexpected negative impacts. When feed-in tariff is imposed together with emissions trading, in some plants the production of renewable electricity might decrease as the emissions price increases. The dissertation also shows that in liquid biofuel production, investment subsidy may cause high direct policy costs and other negative impacts when compared to other policy instruments. The results of the dissertation also indicate that from the climate mitigation perspective, perfect competition is the favored wood market competition structure, at least if the emissions trading system is not global.‬ ‪In conclusion, this dissertation suggests that when promoting the use of wood biomass in energy production, the favored policy instruments are subsidies that promote directly the renewable energy production (i.e. production subsidy, renewables subsidy or feed-in premium). Also, the policy instrument should be designed to be dependent on the emissions price or on the substitute price. In addition, this dissertation shows that when planning policies to promote wood-based renewable energy, the goals of the policy scheme should be clear before decisions are made on the choice of the policy instruments.‬

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper contains an analysis of the technical options in agriculture for reducing greenhouse-gas emissions and increasing sinks, arising from three distinct mechanisms: (i) increasing carbon sinks in soil organic matter and above-ground biomass; (ii) avoiding carbon emissions from farms by reducing direct and indirect energy use; and (iii) increasing renewable-energy production from biomass that either substitutes for consumption of fossil fuels or replaces inefficient burning of fuelwood or crop residues, and so avoids carbon emissions, together with use of biogas digesters and improved cookstoves. We then review best-practice sustainable agriculture and renewable-resource-management projects and initiatives in China and India, and analyse the annual net sinks being created by these projects, and the potential market value of the carbon sequestered. We conclude with a summary of the policy and institutional conditions and reforms required for adoption of best sustainability practice in the agricultural sector to achieve the desired reductions in emissions and increases in sinks. A review of 40 sustainable agriculture and renewable-resource-management projects in China and India under the three mechanisms estimated a carbon mitigation potential of 64.8 MtC yr(-1) from 5.5 Mha. The potential income for carbon mitigation is $324 million at $5 per tonne of carbon. The potential exists to increase this by orders of magnitude, and so contribute significantly to greenhouse-gas abatement. Most agricultural mitigation options also provide several ancillary benefits. However, there are many technical, financial, policy, legal and institutional barriers to overcome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A decentralized emission inventories are prepared for road transport sector of India in order to design and implement suitable technologies and policies for appropriate mitigation measures. Globalization and liberalization policies of the government in 90's have increased the number of road vehicles nearly 92.6% from 1980–1981 to 2003–2004. These vehicles mainly consume non-renewable fossil fuels, and are a major contributor of green house gases, particularly CO2 emission. This paper focuses on the statewise road transport emissions (CO2, CH4, CO, NOx, N2O, SO2, PM and HC), using region specific mass emission factors for each type of vehicles. The country level emissions (CO2, CH4, CO, NOx, N2O, SO2 and NMVOC) are calculated for railways, shipping and airway, based on fuel types. In India, transport sector emits an estimated 258.10 Tg of CO2, of which 94.5% was contributed by road transport (2003–2004). Among all the states and Union Territories, Maharashtra's contribution is the largest, 28.85 Tg (11.8%) of CO2, followed by Tamil Nadu 26.41 Tg (10.8%), Gujarat 23.31 Tg (9.6%), Uttar Pradesh 17.42 Tg (7.1%), Rajasthan 15.17 Tg (6.22%) and, Karnataka 15.09 Tg (6.19%). These six states account for 51.8% of the CO2 emissions from road transport.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The air we breathe is being polluted by activities such as vehicles; burning coal, oil, and other fossil fuels; and manufacturing chemicals. Air pollution can even come from smaller, everyday activities such as cooking, space heating, and degreasing and painting operations. These activities add gases and particles to the air we breathe. When these gases and particles accumulate in the air in high enough concentrations, they can harm us and our environment. The module on Air Pollution deals with the various sources of air pollution and the associated environmental and health impacts. It also discusses the appropriate measures to control/prevent the same.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In todays era of energy crisis and global warming, hydrogen has been projected as a sustainable alternative to depleting CO2-emitting fossil fuels. However, its deployment as an energy source is impeded by many issues, one of the most important being storage. Chemical hydrogen storage materials, in particular B?N compounds such as ammonia borane, with a potential storage capacity of 19.6 wt?% H2 and 0.145 kg?H?2?L-1, have been intensively studied from the standpoint of addressing the storage issues. Ammonia borane undergoes dehydrogenation through hydrolysis at room temperature in the presence of a catalyst, but its practical implementation is hindered by several problems affecting all of the chemical compounds in the reaction scheme, including ammonia borane, water, borate byproducts, and hydrogen. In this Minireview, we exhaustively survey the state of the art, discuss the fundamental problems, and, where applicable, propose solutions with the prospect of technological applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Energy and energy services are the backbone of growth and development in India and is increasingly dependent upon the use of fossil based fuels that lead to greenhouse gases (GHG) emissions and related concerns. Algal biofuels are being evolved as carbon (C)-neutral alternative biofuels. Algae are photosynthetic microorganisms that convert sunlight, water and carbon dioxide (CO2) to various sugars and lipids Tri-Acyl-Glycols (TAG) and show promise as an alternative, renewable and green fuel source for India. Compared to land based oilseed crops algae have potentially higher yields (5-12 g/m(2)/d) and can use locations and water resources not suited for agriculture. Within India, there is little additional land area for algal cultivation and therefore needs to be carried out in places that are already used for agriculture, e.g. flooded paddy lands (20 Mha) with village level technologies and on saline wastelands (3 Mha). Cultivating algae under such conditions requires novel multi-tier, multi-cyclic approaches of sharing land area without causing threats to food and water security as well as demand for additional fertilizer resources by adopting multi-tier cropping (algae-paddy) in decentralized open pond systems. A large part of the algal biofuel production is possible in flooded paddy crop land before the crop reaches dense canopies, in wastewaters (40 billion litres per day), in salt affected lands and in nutrient/diversity impoverished shallow coastline fishery. Mitigation will be achieved through avoidance of GHG, C-capture options and substitution of fossil fuels. Estimates made in this paper suggest that nearly half of the current transportation petro-fuels could be produced at such locations without disruption of food security, water security or overall sustainability. This shift can also provide significant mitigation avenues. The major adaptation needs are related to socio-technical acceptance for reuse of various wastelands, wastewaters and waste-derived energy and by-products through policy and attitude change efforts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wind power, as an alternative to fossil fuels, is plentiful, renewable, widely distributed, clean, produces no greenhouse gas emissions during operation, and uses little land. In operation, the overall cost per unit of energy produced is similar to the cost for new coal and natural gas installations. However, the stochastic behaviour of wind speeds leads to significant disharmony between wind energy production and electricity demand. Wind generation suffers from an intermittent characteristics due to the own diurnal and seasonal patterns of the wind behaviour. Both reactive power and voltage control are important under varying operating conditions of wind farm. To optimize reactive power flow and to keep voltages in limit, an optimization method is proposed in this paper. The objective proposed is minimization of the voltage deviations of the load buses (Vdesired). The approach considers the reactive power limits of wind generators and co-ordinates the transformer taps. This algorithm has been tested under practically varying conditions simulated on a test system. The results are obtained on a system of 50-bus real life equivalent power network. The result shows the efficiency of the proposed method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rapidly depleting stocks of fossil fuels and increasing greenhouse gas (GHG) emissions have necessitated the exploration of cost effective sustainable energy sources focussing on biofuels through algae. Abundant wastewaters generated in urban localities every day provide the nourishment to nurture algae for biofuel generation. The present communication focuses on the lipid prospects of algae grown in wastewater systems. Euglena sp., Spirogyra sp. and Phormidium sp. were collected from selected locations of sewage fed urban lakes and sewage treatment plants of Bangalore and Mysore. The total lipid content of Euglena sp. was higher (24.6%) compared to Spirogyra sp. (18.4%) followed by Phormidium sp. (8.8%) and their annual lipid yield potential was 6.52, 1.94 and 2.856 t/ha/year, respectively. These species showed higher content of fatty acids (palmitate, stearate followed by oleic and linoleic acids) with the desirable biofuel properties. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ever increasing energy requirements, environmental concerns and energy security needs are strongly influencing engine researchers to consider renewable biofuels as alternatives to fossil fuels. Spray process being important in IC engine combustion, existing literature on various biofuel sprays is reviewed and summarized. Both experimental and computational research findings are reviewed in a detailed manner for compression ignition (CI) engine sprays and briefly for spark ignition (SI) engine sprays. The physics of basic atomization process of sprays from various injectors is included to highlight the most recent research findings followed by discussion highlighting the effect of physico-chemical properties on spray atomization for both biofuels and fossil fuels. Biodiesel sprays are found to penetrate faster and haw narrow spray plume angle and larger droplet sizes compared to diesel. Results of analytical and computational models are shown to be useful in shedding light on the actual process of atomization. However, further studies on understanding primary atomization and the effect of fuel properties on primary atomization are required. As far as secondary atomization is concerned, changes in regimes are observed to occur at higher air-jet velocities for biodiesel compared to those of diesel. Evaporating sprays revealed that the liquid length is longer for biodiesel. Pure plant oil sprays with potential use in CI engines may require alternative injector technology due to slower breakup as compared to diesel. Application of ethanol to gasoline engines may be feasible without any modifications to port fuel injection (PFI) engines. More studies are required on the application of alternative fuels to high pressure sprays used in Gasoline Direct Injection (GDI) engines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Concentration of greenhouse gases (GHG) in the atmosphere has been increasing rapidly during the last century due to ever increasing anthropogenic activities resulting in significant increases in the temperature of the Earth causing global warming. Major sources of GHG are forests (due to human induced land cover changes leading to deforestation), power generation (burning of fossil fuels), transportation (burning fossil fuel), agriculture (livestock, farming, rice cultivation and burning of crop residues), water bodies (wetlands), industry and urban activities (building, construction, transport, solid and liquid waste). Aggregation of GHG (CO2 and non-CO2 gases), in terms of Carbon dioxide equivalent (CO(2)e), indicate the GHG footprint. GHG footprint is thus a measure of the impact of human activities on the environment in terms of the amount of greenhouse gases produced. This study focuses on accounting of the amount of three important greenhouses gases namely carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) and thereby developing GHG footprint of the major cities in India. National GHG inventories have been used for quantification of sector-wise greenhouse gas emissions. Country specific emission factors are used where all the emission factors are available. Default emission factors from IPCC guidelines are used when there are no country specific emission factors. Emission of each greenhouse gas is estimated by multiplying fuel consumption by the corresponding emission factor. The current study estimates GHG footprint or GHG emissions (in terms of CO2 equivalent) for Indian major cities and explores the linkages with the population and GDP. GHG footprint (Aggregation of Carbon dioxide equivalent emissions of GHG's) of Delhi, Greater Mumbai, Kolkata, Chennai, Greater Bangalore, Hyderabad and Ahmedabad are found to be 38,633.2 Gg, 22,783.08 Gg, 14,812.10 Gg, 22,090.55 Gg, 19,796.5 Gg, 13,734.59 Gg and 91,24.45 Gg CO2 eq., respectively. The major contributors sectors are transportation sector (contributing 32%, 17.4%, 13.3%, 19.5%, 43.5%, 56.86% and 25%), domestic sector (contributing 30.26%, 37.2%, 42.78%, 39%, 21.6%, 17.05% and 27.9%) and industrial sector (contributing 7.9%, 7.9%, 17.66%, 20.25%, 1231%, 11.38% and 22.41%) of the total emissions in Delhi, Greater Mumbai, Kolkata, Chennai, Greater Bangalore, Hyderabad and Ahmedabad, respectively. Chennai emits 4.79 t of CO2 equivalent emissions per capita, the highest among all the cities followed by Kolkata which emits 3.29 t of CO2 equivalent emissions per capita. Also Chennai emits the highest CO2 equivalent emissions per GDP (2.55 t CO2 eq./Lakh Rs.) followed by Greater Bangalore which emits 2.18 t CO2 eq./Lakh Rs. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the pressing need to meet an ever-increasing energy demand, the combustion systems utilizing fossil fuels have been the major contributors to carbon footprint. As the combustion of conventional energy resources continue to produce significant Green House gas (GHG) emissions, there is a strong emphasis to either upgrade or find an energy-efficient eco-friendly alternative to the traditional hydrocarbon fuels. With recent developments in nanotechnology, the ability to manufacture materials with custom tailored properties at nanoscale has led to the discovery of a new class of high energy density fuels containing reactive metallic nanoparticles (NPs). Due to the high reactive interfacial area and enhanced thermal and mass transport properties of nanomaterials, the high heat of formation of these metallic fuels can now be released rapidly, thereby saving on specific fuel consumption and hence reducing GHG emissions. In order to examine the efficacy of nanofuels in energetic formulations, it is imperative to first study their combustion characteristics at the droplet scale that form the fundamental building block for any combustion system utilizing liquid fuel spray. During combustion of such multiphase, multicomponent droplets, the phenomenon of diffusional entrapment of high volatility species leads to its explosive boiling (at the superheat limit) thereby leading to an intense internal pressure build-up. This pressure upsurge causes droplet fragmentation either in form of a microexplosion or droplet puffing followed by atomization (with formation of daughter droplets) featuring disruptive burning. Both these atomization modes represent primary mechanisms for extracting the high oxidation energies of metal NP additives by exposing them to the droplet flame (with daughter droplets acting as carriers of NPs). Atomization also serves as a natural mechanism for uniform distribution and mixing of the base fuel and enhancing burning rates (due to increase in specific surface area through formation of smaller daughter droplets). However, the efficiency of atomization depends on the thermo-physical properties of the base fuel, NP concentration and type. For instance, at dense loading NP agglomeration may lead to shell formation which would sustain the pressure upsurge and hence suppress atomization thereby reducing droplet gasification rate. Contrarily, the NPs may act as nucleation sites and aid boiling and the radiation absorption by NPs (from the flame) may lead to enhanced burning rates. Thus, nanoadditives may have opposing effects on the burning rate depending on the relative dominance of processes occurring at the droplet scale. The fundamental idea in this study is to: First, review different thermo-physical processes that occur globally at the droplet and sub-droplet scale such as surface regression, shell formation due to NP agglomeration, internal boiling, atomization/NP transport to flame zone and flame acoustic interaction that occur at the droplet scale and second, understand how their interaction changes as a function of droplet size, NP type, NP concentration and the type of base fuel. This understanding is crucial for obtaining phenomenological insights on the combustion behavior of novel nanofluid fuels that show great promise for becoming the next-generation fuels. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Executive Summary: Observations show that warming of the climate is unequivocal. The global warming observed over the past 50 years is due primarily to human-induced emissions of heat-trapping gases. These emissions come mainly from the burning of fossil fuels (coal, oil, and gas), with important contributions from the clearing of forests, agricultural practices, and other activities. Warming over this century is projected to be considerably greater than over the last century. The global average temperature since 1900 has risen by about 1.5ºF. By 2100, it is projected to rise another 2 to 11.5ºF. The U.S. average temperature has risen by a comparable amount and is very likely to rise more than the global average over this century, with some variation from place to place. Several factors will determine future temperature increases. Increases at the lower end of this range are more likely if global heat-trapping gas emissions are cut substantially. If emissions continue to rise at or near current rates, temperature increases are more likely to be near the upper end of the range. Volcanic eruptions or other natural variations could temporarily counteract some of the human-induced warming, slowing the rise in global temperature, but these effects would only last a few years. Reducing emissions of carbon dioxide would lessen warming over this century and beyond. Sizable early cuts in emissions would significantly reduce the pace and the overall amount of climate change. Earlier cuts in emissions would have a greater effect in reducing climate change than comparable reductions made later. In addition, reducing emissions of some shorter-lived heat-trapping gases, such as methane, and some types of particles, such as soot, would begin to reduce warming within weeks to decades. Climate-related changes have already been observed globally and in the United States. These include increases in air and water temperatures, reduced frost days, increased frequency and intensity of heavy downpours, a rise in sea level, and reduced snow cover, glaciers, permafrost, and sea ice. A longer ice-free period on lakes and rivers, lengthening of the growing season, and increased water vapor in the atmosphere have also been observed. Over the past 30 years, temperatures have risen faster in winter than in any other season, with average winter temperatures in the Midwest and northern Great Plains increasing more than 7ºF. Some of the changes have been faster than previous assessments had suggested. These climate-related changes are expected to continue while new ones develop. Likely future changes for the United States and surrounding coastal waters include more intense hurricanes with related increases in wind, rain, and storm surges (but not necessarily an increase in the number of these storms that make landfall), as well as drier conditions in the Southwest and Caribbean. These changes will affect human health, water supply, agriculture, coastal areas, and many other aspects of society and the natural environment. This report synthesizes information from a wide variety of scientific assessments (see page 7) and recently published research to summarize what is known about the observed and projected consequences of climate change on the United States. It combines analysis of impacts on various sectors such as energy, water, and transportation at the national level with an assessment of key impacts on specific regions of the United States. For example, sea-level rise will increase risks of erosion, storm surge damage, and flooding for coastal communities, especially in the Southeast and parts of Alaska. Reduced snowpack and earlier snow melt will alter the timing and amount of water supplies, posing significant challenges for water resource management in the West. (PDF contains 196 pages)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper deals with the economics of gasification facilities in general and IGCC power plants in particular. Regarding the prospects of these systems, passing the technological test is one thing, passing the economic test can be quite another. In this respect, traditional valuations assume constant input and/or output prices. Since this is hardly realistic, we allow for uncertainty in prices. We naturally look at the markets where many of the products involved are regularly traded. Futures markets on commodities are particularly useful for valuing uncertain future cash flows. Thus, revenues and variable costs can be assessed by means of sound financial concepts and actual market data. On the other hand, these complex systems provide a number of flexibility options (e.g., to choose among several inputs, outputs, modes of operation, etc.). Typically, flexibility contributes significantly to the overall value of real assets. Indeed, maximization of the asset value requires the optimal exercise of any flexibility option available. Yet the economic value of flexibility is elusive, the more so under (price) uncertainty. And the right choice of input fuels and/or output products is a main concern for the facility managers. As a particular application, we deal with the valuation of input flexibility. We follow the Real Options approach. In addition to economic variables, we also address technical and environmental issues such as energy efficiency, utility performance characteristics and emissions (note that carbon constraints are looming). Lastly, a brief introduction to some stochastic processes suitable for valuation purposes is provided.