852 resultados para Formative assessment framework. Assessment tools. Ames
Resumo:
The paper explains a teaching project financed by the University of Barcelona (UB). It focuses on ageneric skill of the University of Barcelona, which is defined as "the learning capability andresponsibility”, and in which analytical and synthesis skills are included. It follows a multidisciplinaryapproach including teachers of Mathematics, World Economics and Economic History. All of us sharethe same students during the first and the second course of the grade in Economics at the Faculty ofEconomics and Business. The project has been developed in three stages. The first one has beendone during the first semester of the course 2012/13, being applied to first year students on thesubjects of Mathematics and Economic History. The second phase is being to be done during thesecond semester only on the Economic History subject. A third stage is going to be done next course2013/14 to second year students on the subject of World Economics. Each different teaching teamhas developed specific materials and assessment tools for each one of the subjects included in theproject. The project emphasizes two teaching dimensions: the elaboration of teaching materials topromote the acquisition of generic skills from an interdisciplinary point of view, and the design ofspecific tools to assess such skills. The first results of the first phase of the project shows cleardeficiencies in the analytical skill regarding to first year students.
Resumo:
Objectives: Quantitative ultrasound (QUS) is an attractive method for assessing fracture risk because it is portable, inexpensive, without ionizing radiation, and available in areas of the world where DXA is not readily accessible or affordable. However, the diversity of QUS scanners and variability of fracture outcomes measured in different studies is an important obstacle to widespread utilisation of QUS for fracture risk assessment. We aimed in this review to assess the predictive power of heel QUS for fractures considering different characteristics of the association (QUS parameters and fracture outcomes measured, QUS devices, study populations, and independence from DXA-measured bone density).Materials/Methods : We conducted an inverse-variance randomeffects meta-analysis of prospective studies with heel QUS measures at baseline and fracture outcomes in their follow-up. Relative risks (RR) per standard deviation (SD) of different QUS parameters (broadband ultrasound attenuation [BUA], speed of sound &SOS;, stiffness index &SI;, and quantitative ultrasound index [QUI]) for various fracture outcomes (hip, vertebral, any clinical, any osteoporotic, and major osteoporotic fractures) were reported based on study questions.Results : 21 studies including 55,164 women and 13,742 men were included with a total follow-up of 279,124 person-years. All four QUS parameters were associated with risk of different fractures. For instance, RR of hip fracture for 1 SD decrease of BUA was 1.69 (95% CI 1.43-2.00), SOS was 1.96 (95% CI 1.64-2.34), SI was 2.26 (95%CI 1.71-2.99), and QUI was 1.99 (95% CI 1.49-2.67). Validated devices from different manufacturers predicted fracture risks with a similar performance (meta-regression p-values>0.05 for difference of devices). There was no sign of publication bias among the studies. QUS measures predicted fracture with a similar performance in men and women. Meta-analysis of studies with QUS measures adjusted for hip DXA showed a significant and independent association with fracture risk (RR/SD for BUA =1.34 [95%CI 1.22-1.49]).Conclusions : This study confirms that QUS of the heel using validated devices predicts risk of different fracture outcomes in elderly men and women. Further research and international collaborations are needed for standardisation of QUS parameters across various manufacturers and inclusion of QUS in fracture risk assessment tools. Disclosure of Interest : None declared.
Resumo:
Educational institutions are considered a keystone for the establishment of a meritocratic society. They supposedly serve two functions: an educational function that promotes learning for all, and a selection function that sorts individuals into different programs, and ultimately social positions, based on individual merit. We study how the function of selection relates to support for assessment practices known to harm vs. benefit lower status students, through the perceived justice principles underlying these practices. We study two assessment practices: normative assessment-focused on ranking and social comparison, known to hinder the success of lower status students-and formative assessment-focused on learning and improvement, known to benefit lower status students. Normative assessment is usually perceived as relying on an equity principle, with rewards being allocated based on merit and should thus appear as positively associated with the function of selection. Formative assessment is usually perceived as relying on corrective justice that aims to ensure equality of outcomes by considering students' needs, which makes it less suitable for the function of selection. A questionnaire measuring these constructs was administered to university students. Results showed that believing that education is intended to select the best students positively predicts support for normative assessment, through increased perception of its reliance on equity, and negatively predicts support for formative assessment, through reduced perception of its ability to establish corrective justice. This study suggests that the belief in the function of selection as inherent to educational institutions can contribute to the reproduction of social inequalities by preventing change from assessment practices known to disadvantage lowerstatus student, namely normative assessment, to more favorable practices, namely formative assessment, and by promoting matching beliefs in justice principles.
Resumo:
The aim of this talk is to explore assessment in higher education and support for learners during their academic education. It investigates the assessment methods that provide success for universities and learners. Universities which implement CLIL should assess learners who would like to attend a programme in English without taking account of their English language qualifications. This assessment should be done in writing, listening and comprehension, speaking and reading and comprehension. In the literature, formative and summative assessments are considered. Formative assessment is ongoing, 'more complex as its intention is to be directly diagnostics with a view to immediately impacting on learner's next steps' (Coyle et al, 2010). Summative assessment occurs at the end of the term or course. McKay, 2006 divides assessment into three phases: design, operationalization and administration phase. If these three phases can't be embedded in the classroom as they are, they can be introduced as a set of questions; why?, how? and what?
Resumo:
Learning to write is a daunting task for many young children. The purpose of this study was to examine the impact of a combined approach to writing instruction and assessment on the writing performance of students in two grade 3 classes. Five forms and traits of writing were purposefully connected during writing lessons while exhibiting links to the four strands of the grade 3 Ontario science curriculum. Students then had opportunities to engage in the writing process and to self-assess their compositions using either student-developed (experimental group/teacher-researcher's class) or teachercreated (control group/teacher-participant's class) rubrics. Paired samples t-tests revealed that both the experimental and control groups exhibited statistically significant growth from pretest to posttest on all five integrated writing units. Independent samples t-tests showed that the experimental group outperformed the control group on the persuasive + sentence fluency and procedure + word choice writing tasks. Pearson product-moment correlation r tests revealed significant correlations between the experimental group and the teacher-researcher on the recount + ideas and report + organization tasks, while students in the control group showed significant correlations with the teacher-researcher on the narrative + voice and procedure + word choice tasks. Significant correlations between the control group and the teacher-participant were evident on the persuasive + sentence fluency and procedure + word choice tasks. Qualitative analyses revealed five themes that highlighted how students' self-assessments and reflections can be used to guide teachers in their instructional decision making. These findings suggest that educators should adopt an integrated writing program in their classrooms, while working with students to create and utilize purposeful writing assessment tools.
Resumo:
Building assessment methods have become a popular research field since the early 1990s. An international tool which allows the assessment of buildings in all regions, taking into account differences in climates, topographies and cultures does not yet exist. This paper aims to demonstrate the importance of criteria and sub-criteria in developing a new potential building assessment method for Saudi Arabia. Recently, the awareness of sustainability has been increasing in developing countries due to high energy consumption, pollution and high carbon foot print. There is no debate that assessment criteria have an important role to identify the tool’s orientation. However, various aspects influence the criteria and sub-criteria of assessment tools such as environment, economic, social and cultural to mention but a few. The author provides an investigation on the most popular and globally used schemes: BREEAM, LEED, Green Star, CASBEE and Estidama in order to identify the effectiveness of the different aspects of the assessment criteria and the impacts of these criteria on the assessment results; that will provide a solid foundation to develop an effective sustainable assessment method for buildings in Saudi Arabia. Initial results of the investigation suggest that each country needs to develop its own assessment method in order to achieve desired results, while focusing upon the indigenous environmental, economic, social and cultural conditions. Keywords: Assessment methods, BREEAM, LEED, Green Star, CASBEE, Estidama, sustainability, sustainable buildings, Environment, Saudi Arabia.
Resumo:
The techno-economic performance of a small wind turbine is very sensitive to the available wind resource. However, due to financial and practical constraints installers rely on low resolution wind speed databases to assess a potential site. This study investigates whether the two site assessment tools currently used in the UK, NOABL or the Energy Saving Trust wind speed estimator, are accurate enough to estimate the techno-economic performance of a small wind turbine. Both the tools tend to overestimate the wind speed, with a mean error of 23% and 18% for the NOABL and Energy Saving Trust tool respectively. A techno-economic assessment of 33 small wind turbines at each site has shown that these errors can have a significant impact on the estimated load factor of an installation. Consequently, site/turbine combinations which are not economically viable can be predicted to be viable. Furthermore, both models tend to underestimate the wind resource at relatively high wind speed sites, this can lead to missed opportunities as economically viable turbine/site combinations are predicted to be non-viable. These results show that a better understanding of the local wind resource is a required to make small wind turbines a viable technology in the UK.
Resumo:
New models for estimating bioaccumulation of persistent organic pollutants in the agricultural food chain were developed using recent improvements to plant uptake and cattle transfer models. One model named AgriSim was based on K OW regressions of bioaccumulation in plants and cattle, while the other was a steady-state mechanistic model, AgriCom. The two developed models and European Union System for the Evaluation of Substances (EUSES), as a benchmark, were applied to four reported food chain (soil/air-grass-cow-milk) scenarios to evaluate the performance of each model simulation against the observed data. The four scenarios considered were as follows: (1) polluted soil and air, (2) polluted soil, (3) highly polluted soil surface and polluted subsurface and (4) polluted soil and air at different mountain elevations. AgriCom reproduced observed milk bioaccumulation well for all four scenarios, as did AgriSim for scenarios 1 and 2, but EUSES only did this for scenario 1. The main causes of the deviation for EUSES and AgriSim were the lack of the soil-air-plant pathway and the ambient air-plant pathway, respectively. Based on the results, it is recommended that soil-air-plant and ambient air-plant pathway should be calculated separately and the K OW regression of transfer factor to milk used in EUSES be avoided. AgriCom satisfied the recommendations that led to the low residual errors between the simulated and the observed bioaccumulation in agricultural food chain for the four scenarios considered. It is therefore recommended that this model should be incorporated into regulatory exposure assessment tools. The model uncertainty of the three models should be noted since the simulated concentration in milk from 5th to 95th percentile of the uncertainty analysis often varied over two orders of magnitude. Using a measured value of soil organic carbon content was effective to reduce this uncertainty by one order of magnitude.
Resumo:
Furthered mainly by new technologies, the expansion of distance education has created a demand for tools and methodologies to enhance teaching techniques based on proven pedagogical theories. Such methodologies must also be applied in the so-called Virtual Learning Environments. The aim of this work is to present a planning methodology based on known pedagogical theories which contributes to the incorporation of assessment in the process of teaching and learning. With this in mind, the pertinent literature was reviewed in order to identify the key pedagogical concepts needed to the definition of this methodology and a descriptive approach was used to establish current relations between this conceptual framework and distance education. As a result of this procedure, the Contents Map and the Dependence Map were specified and implemented, two teaching tools that promote the planning of a course by taking into account assessment still in this early stage. Inserted on Moodle, the developed tools were tested in a course of distance learning for practical observation of the involved concepts. It could be verified that the methodology proposed by the above-mentioned tools is in fact helpful in course planning and in strengthening educational assessment, placing the student as central element in the process of teaching and learning
Resumo:
In this action research study of my eighth grade differentiated Algebra students, I investigated the effects of students using self-assessment on their homework. Students in my class were unmotivated and failed test objectives consistently. I wanted students to see that they controlled their learning and could be motivated to succeed. Formative assessment tells students how they need to improve. Learning needs to happen before they can be assessed. Self-assessment is one tool that helps students know if they are learning. A rubric scoring guide, daily documentation sheet and feedback on homework and test correlations were used to help students monitor their learning. Students needed time to develop the skill to self-assess. Students began to understand the relationship between homework and performing well on tests by the end of the action research period. Early in the period, most students encountered difficulty understanding that they controlled their learning and did not think homework was important. By the end of the year, all students said homework was important and that it helped them on quizzes and tests. Motivating students to complete homework is difficult. Teaching them to self-assess and to keep track of their learning helps them stay motivated.
Resumo:
Item response theory (IRT) comprises a set of statistical models which are useful in many fields, especially when there is an interest in studying latent variables (or latent traits). Usually such latent traits are assumed to be random variables and a convenient distribution is assigned to them. A very common choice for such a distribution has been the standard normal. Recently, Azevedo et al. [Bayesian inference for a skew-normal IRT model under the centred parameterization, Comput. Stat. Data Anal. 55 (2011), pp. 353-365] proposed a skew-normal distribution under the centred parameterization (SNCP) as had been studied in [R. B. Arellano-Valle and A. Azzalini, The centred parametrization for the multivariate skew-normal distribution, J. Multivariate Anal. 99(7) (2008), pp. 1362-1382], to model the latent trait distribution. This approach allows one to represent any asymmetric behaviour concerning the latent trait distribution. Also, they developed a Metropolis-Hastings within the Gibbs sampling (MHWGS) algorithm based on the density of the SNCP. They showed that the algorithm recovers all parameters properly. Their results indicated that, in the presence of asymmetry, the proposed model and the estimation algorithm perform better than the usual model and estimation methods. Our main goal in this paper is to propose another type of MHWGS algorithm based on a stochastic representation (hierarchical structure) of the SNCP studied in [N. Henze, A probabilistic representation of the skew-normal distribution, Scand. J. Statist. 13 (1986), pp. 271-275]. Our algorithm has only one Metropolis-Hastings step, in opposition to the algorithm developed by Azevedo et al., which has two such steps. This not only makes the implementation easier but also reduces the number of proposal densities to be used, which can be a problem in the implementation of MHWGS algorithms, as can be seen in [R.J. Patz and B.W. Junker, A straightforward approach to Markov Chain Monte Carlo methods for item response models, J. Educ. Behav. Stat. 24(2) (1999), pp. 146-178; R. J. Patz and B. W. Junker, The applications and extensions of MCMC in IRT: Multiple item types, missing data, and rated responses, J. Educ. Behav. Stat. 24(4) (1999), pp. 342-366; A. Gelman, G.O. Roberts, and W.R. Gilks, Efficient Metropolis jumping rules, Bayesian Stat. 5 (1996), pp. 599-607]. Moreover, we consider a modified beta prior (which generalizes the one considered in [3]) and a Jeffreys prior for the asymmetry parameter. Furthermore, we study the sensitivity of such priors as well as the use of different kernel densities for this parameter. Finally, we assess the impact of the number of examinees, number of items and the asymmetry level on the parameter recovery. Results of the simulation study indicated that our approach performed equally as well as that in [3], in terms of parameter recovery, mainly using the Jeffreys prior. Also, they indicated that the asymmetry level has the highest impact on parameter recovery, even though it is relatively small. A real data analysis is considered jointly with the development of model fitting assessment tools. The results are compared with the ones obtained by Azevedo et al. The results indicate that using the hierarchical approach allows us to implement MCMC algorithms more easily, it facilitates diagnosis of the convergence and also it can be very useful to fit more complex skew IRT models.
Resumo:
[EN] This paper describes VPL, a Virtual Programming Lab module for Moodle, developed at the University of Las Palmas of Gran Canaria (ULPGC) and released for free uses under GNU/GPL license. For the students, it is a simple development environment with auto evaluation capabilities. For the instructors, it is a students' work management system, with features to facilitate the preparation of assignments, manage the submissions, check for plagiarism, and do assessments with the aid of powerful and flexible assessment tools based on program testing, all of that being independent of the programming language used for the assignments and taken into account critical security issues.
Resumo:
The increasing aversion to technological risks of the society requires the development of inherently safer and environmentally friendlier processes, besides assuring the economic competitiveness of the industrial activities. The different forms of impact (e.g. environmental, economic and societal) are frequently characterized by conflicting reduction strategies and must be holistically taken into account in order to identify the optimal solutions in process design. Though the literature reports an extensive discussion of strategies and specific principles, quantitative assessment tools are required to identify the marginal improvements in alternative design options, to allow the trade-off among contradictory aspects and to prevent the “risk shift”. In the present work a set of integrated quantitative tools for design assessment (i.e. design support system) was developed. The tools were specifically dedicated to the implementation of sustainability and inherent safety in process and plant design activities, with respect to chemical and industrial processes in which substances dangerous for humans and environment are used or stored. The tools were mainly devoted to the application in the stages of “conceptual” and “basic design”, when the project is still open to changes (due to the large number of degrees of freedom) which may comprise of strategies to improve sustainability and inherent safety. The set of developed tools includes different phases of the design activities, all through the lifecycle of a project (inventories, process flow diagrams, preliminary plant lay-out plans). The development of such tools gives a substantial contribution to fill the present gap in the availability of sound supports for implementing safety and sustainability in early phases of process design. The proposed decision support system was based on the development of a set of leading key performance indicators (KPIs), which ensure the assessment of economic, societal and environmental impacts of a process (i.e. sustainability profile). The KPIs were based on impact models (also complex), but are easy and swift in the practical application. Their full evaluation is possible also starting from the limited data available during early process design. Innovative reference criteria were developed to compare and aggregate the KPIs on the basis of the actual sitespecific impact burden and the sustainability policy. Particular attention was devoted to the development of reliable criteria and tools for the assessment of inherent safety in different stages of the project lifecycle. The assessment follows an innovative approach in the analysis of inherent safety, based on both the calculation of the expected consequences of potential accidents and the evaluation of the hazards related to equipment. The methodology overrides several problems present in the previous methods proposed for quantitative inherent safety assessment (use of arbitrary indexes, subjective judgement, build-in assumptions, etc.). A specific procedure was defined for the assessment of the hazards related to the formations of undesired substances in chemical systems undergoing “out of control” conditions. In the assessment of layout plans, “ad hoc” tools were developed to account for the hazard of domino escalations and the safety economics. The effectiveness and value of the tools were demonstrated by the application to a large number of case studies concerning different kinds of design activities (choice of materials, design of the process, of the plant, of the layout) and different types of processes/plants (chemical industry, storage facilities, waste disposal). An experimental survey (analysis of the thermal stability of isomers of nitrobenzaldehyde) provided the input data necessary to demonstrate the method for inherent safety assessment of materials.
From fall-risk assessment to fall detection: inertial sensors in the clinical routine and daily life
Resumo:
Falls are caused by complex interaction between multiple risk factors which may be modified by age, disease and environment. A variety of methods and tools for fall risk assessment have been proposed, but none of which is universally accepted. Existing tools are generally not capable of providing a quantitative predictive assessment of fall risk. The need for objective, cost-effective and clinically applicable methods would enable quantitative assessment of fall risk on a subject-specific basis. Tracking objectively falls risk could provide timely feedback about the effectiveness of administered interventions enabling intervention strategies to be modified or changed if found to be ineffective. Moreover, some of the fundamental factors leading to falls and what actually happens during a fall remain unclear. Objectively documented and measured falls are needed to improve knowledge of fall in order to develop more effective prevention strategies and prolong independent living. In the last decade, several research groups have developed sensor-based automatic or semi-automatic fall risk assessment tools using wearable inertial sensors. This approach may also serve to detect falls. At the moment, i) several fall-risk assessment studies based on inertial sensors, even if promising, lack of a biomechanical model-based approach which could provide accurate and more detailed measurements of interests (e.g., joint moments, forces) and ii) the number of published real-world fall data of older people in a real-world environment is minimal since most authors have used simulations with healthy volunteers as a surrogate for real-world falls. With these limitations in mind, this thesis aims i) to suggest a novel method for the kinematics and dynamics evaluation of functional motor tasks, often used in clinics for the fall-risk evaluation, through a body sensor network and a biomechanical approach and ii) to define the guidelines for a fall detection algorithm based on a real-world fall database availability.
Resumo:
Background: The recent development of semi-automated techniques for staining and analyzing flow cytometry samples has presented new challenges. Quality control and quality assessment are critical when developing new high throughput technologies and their associated information services. Our experience suggests that significant bottlenecks remain in the development of high throughput flow cytometry methods for data analysis and display. Especially, data quality control and quality assessment are crucial steps in processing and analyzing high throughput flow cytometry data. Methods: We propose a variety of graphical exploratory data analytic tools for exploring ungated flow cytometry data. We have implemented a number of specialized functions and methods in the Bioconductor package rflowcyt. We demonstrate the use of these approaches by investigating two independent sets of high throughput flow cytometry data. Results: We found that graphical representations can reveal substantial non-biological differences in samples. Empirical Cumulative Distribution Function and summary scatterplots were especially useful in the rapid identification of problems not identified by manual review. Conclusions: Graphical exploratory data analytic tools are quick and useful means of assessing data quality. We propose that the described visualizations should be used as quality assessment tools and where possible, be used for quality control.