957 resultados para Fluorescence Spectroscopy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accurately assessing the extent of myocardial tissue injury induced by Myocardial infarction (MI) is critical to the planning and optimization of MI patient management. With this in mind, this study investigated the feasibility of using combined fluorescence and diffuse reflectance spectroscopy to characterize a myocardial infarct at the different stages of its development. An animal study was conducted using twenty male Sprague-Dawley rats with MI. In vivo fluorescence spectra at 337 nm excitation and diffuse reflectance between 400 nm and 900 nm were measured from the heart using a portable fiber-optic spectroscopic system. Spectral acquisition was performed on - (1) the normal heart region; (2) the region immediately surrounding the infarct; and (3) the infarcted region - one, two, three and four weeks into MI development. The spectral data were divided into six subgroups according to the histopathological features associated with various degrees / severities of myocardial tissue injury as well as various stages of myocardial tissue remodeling, post infarction. Various data processing and analysis techniques were employed to recognize the representative spectral features corresponding to various histopathological features associated with myocardial infarction. The identified spectral features were utilized in discriminant analysis to further evaluate their effectiveness in classifying tissue injuries induced by MI. In this study, it was observed that MI induced significant alterations (p < 0.05) in the diffuse reflectance spectra, especially between 450 nm and 600 nm, from myocardial tissue within the infarcted and surrounding regions. In addition, MI induced a significant elevation in fluorescence intensities at 400 and 460 nm from the myocardial tissue from the same regions. The extent of these spectral alterations was related to the duration of the infarction. Using the spectral features identified, an effective tissue injury classification algorithm was developed which produced a satisfactory overall classification result (87.8%). The findings of this research support the concept that optical spectroscopy represents a useful tool to non-invasively determine the in vivo pathophysiological features of a myocardial infarct and its surrounding tissue, thereby providing valuable real-time feedback to surgeons during various surgical interventions for MI.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In archaeometry, the advantages of a combined use of Raman spectroscopy and X-ray fluorescence spectroscopy are extensively discussed for applications such as the analysis of paintings, manuscripts, pottery, etc. Here, we demonstrate for the first time the advantage of using both techniques for analysing glyptics. These engraved gemstones or glass materials were originally used as stamps, to identify the owner, for instance on letters, but also on wine vessels. For this research, a set of 64 glyptics (42 Roman glass specimens and 22 modern ones), belonging to the collection of the museum ‘Quinta das Cruzes’ in Funchal (Madeira, Portugal), was analysed with portable Raman spectroscopy and handheld X-ray fluorescence (hXRF). These techniques were also used to confirm the gemological identification of these precious objects and can give extra information about the glass composition. Raman spectroscopy identifies the molecular composition as well as on the crystalline phases present. On the other hand, hXRF results show that the antique Roman glass samples are characterised with low Pb and Sn levels and that the modern specimens can be discriminated in two groups: lead-based and non-lead-based ones.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Synchronous fluorescence spectroscopy (SFS) was applied for the investigation of interactions of the antibiotic, tetracycline (TC), with DNA in the presence of aluminium ions (Al3+). The study was facilitated by the use of the Methylene Blue (MB) dye probe, and the interpretation of the spectral data with the aid of the chemometrics method, parallel factor analysis (PARAFAC). Three-way synchronous fluorescence analysis extracted the important optimum constant wavelength differences, Δλ, and showed that for the TC–Al3+–DNA, TC–Al3+ and MB dye systems, the associated Δλ values were different (Δλ = 80, 75 and 30 nm, respectively). Subsequent PARAFAC analysis demonstrated the extraction of the equilibrium concentration profiles for the TC–Al3+, TC–Al3+–DNA and MB probe systems. This information is unobtainable by conventional means of data interpretation. The results indicated that the MB dye interacted with the TC–Al3+–DNA surface complex, presumably via a reaction intermediate, TC–Al3+–DNA–MB, leading to the displacement of the TC–Al3+ by the incoming MB dye probe.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The binding interaction of the pesticide Isoprocarb and its degradation product, sodium 2-isopropylphenate, with bovine serum albumin (BSA) was studied by spectrofluorimetry under simulated physiological conditions. Both Isoprocarb and sodium 2-isopropylphenate quenched the intrinsic fluorescence of BSA. This quenching proceeded via a static mechanism. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) obtained from the fluorescence data measured at two different temperatures showed that the binding of Isoprocarb to BSA involved hydrogen bonds and that of sodium 2-isopropylphenate to BSA involved hydrophobic and electrostatic interactions. Synchronous fluorescence spectroscopy of the interaction of BSA with either Isoprocarb or sodium 2-isopropylphenate showed that the molecular structure of the BSA was changed significantly, which is consistent with the known toxicity of the pesticide, i.e., the protein is denatured. The sodium 2-isopropylphenate, was estimated to be about 4–5 times more toxic than its parent, Isoprocarb. Synchronous fluorescence spectroscopy and the resolution of the three-way excitation–emission fluorescence spectra by the PARAFAC method extracted the relative concentration profiles of BSA, Isoprocab and sodium 2-isopropylphenate as a function of the added sodium 2-isopropylphenate. These profiles showed that the degradation product, sodium 2-isopropylphenate, displaced the pesticide in a competitive reaction with the BSA protein.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aggregation behaviors of two surfactants with the same hydrophobic tail, sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and sodium bis(2-ethylhexyl)phosphate (NaDEHP), have been investigated by the fluorescence technique and z-potential (ζ) measurements. Five fine peaks of the pyrene molecule fluorescence spectroscopy appear in the surfactant solution, and the micropolarity at which pyrene locates is monitored from the intensity ratio of the first (I1) and the third peak (I3). A wide peak around 475 nm, the emission spectra of the excimer of pyrene molecules, is observed in the NaDEHP solution, while this is not found for the AOT system. The value of I1/I3 decreases in a more limited concentration range for the AOT system than for NaDEHP, indicating that small aggregates can be more easily formed by NaDEHP molecules. The z-potential results for the aggregates formed by the two surfactants show that the interaction between AOT and PVP is stronger than that between NaDEHP and PVP.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Macrophage differentiation antigen associated with complement three receptor function (Mac-1) belongs to beta(2) subfamily of integrins that mediate important cell-cell and cell-extracellular matrix interactions. Biochemical studies have indicated that Mac-1 is a constitutive heterodimer in vitro. Here, we detected the heterodimerization of Mac-1 subunits in living cells by means of two fluorescence resonance energy transfer (FRET) techniques (fluorescence microscopy and fluorescence spectroscopy) and our results demonstrated that there is constitutive heterodimerization of the Mac-1 subunits and this constitutive heterodimerization of the Mac-1 subunits is cell-type independent. Through FRET imaging, we found that heterodimers of Mac-1 mainly localized in plasma membrane, perinuclear, and Golgi area in living cells. Furthermore, through analysis of the estimated physical distances between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) fused to Mac-1 subunits, we suggested that the conformation of Mac-1 subunits is not affected by the fusion of CFP or YFP and inferred that Mac-1 subunits take different conformation when expressed in Chinese hamster ovary (CHO) and human embryonic kidney (HEK) 293T cells, respectively. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Yb:Y3Al5O12 (Yb:YAG) single crystals with Yb doping concentration 0.5 at.%, 5 at.%, 15 at.%, 25 at.%, 50 at.%, 100 at.% and Yb:YAlO3 (Yb:YAP) single crystals with Yb doping concentration 0.5 at.%, 5 at.%, 15 at.%, 30 at.% were grown by the Czochralski process. The fluorescence spectra of these crystals and the effects of self-absorption on the shape of the fluorescence spectra were studied. Through comparing the fluorescence spectra of Yb:YAG and Yb:YAP, all results indicate that the effects of self-absorption on the fluorescence spectra of Yb:YAP are remarkably stronger than that of Yb:YAG at the same Yb concentration. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The characterization of the algal Nitzschia hantzschiana solution with (or without) Fe(III) was carried out using fluorescence emission and synchronous-scan spectroscopy. An emission peak (excited at 440 nm) was observed at 675 nm for Nitzschia hantzschiana solution. The effective characterization method used was synchronous-scan fluorescence spectroscopy (SFS). A wavelength difference (Delta lambda) of 90 nm was maintained between excitation and emission wavelengths. The peak was observed at about 236(ex) nm (326(em) nm) for synchronous fluorescence spectroscopy. Fe(III) was an effective quencher. The relationship between I-0/I (quenching efficiency) and c (concentration of Fe (III) added) was a linear correlation for the algal solution with Fe(III). Effects of pH on synchronous-scan fluorescence intensity were evident.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The hybridization of immobilized oligonucleotides probe strands with solution phase targets is the underlying principle of microarraybased techniques for the analysis of DNA variation. To study the kinetics of DNA/DNA hybridization, target DNA is often prior labeled with markers. A label-free method of electrochemical impedance spectra (EIS) for study the hybridization in process was reported. The Langmuir model was used to determine the association rate constant (K-on), the dissociation rate constant (K-off) and the affinity rate constant (K-A), for perfect matched DNA hybridization. The results show that, EIS is a successful technique possessing high effectivity and sensitivity to study DNA/DNA hybridization kinetics. This work can provide another view on EIS for the studying of DNA/DNA hybridization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This article presents our most recent advances in synchronous fluorescence (SF) methodology for biomedical diagnostics. The SF method is characterized by simultaneously scanning both the excitation and emission wavelengths while keeping a constant wavelength interval between them. Compared to conventional fluorescence spectroscopy, the SF method simplifies the emission spectrum while enabling greater selectivity, and has been successfully used to detect subtle differences in the fluorescence emission signatures of biochemical species in cells and tissues. The SF method can be used in imaging to analyze dysplastic cells in vitro and tissue in vivo. Based on the SF method, here we demonstrate the feasibility of a time-resolved synchronous fluorescence (TRSF) method, which incorporates the intrinsic fluorescent decay characteristics of the fluorophores. Our prototype TRSF system has clearly shown its advantage in spectro-temporal separation of the fluorophores that were otherwise difficult to spectrally separate in SF spectroscopy. We envision that our previously-tested SF imaging and the newly-developed TRSF methods will combine their proven diagnostic potentials in cancer diagnosis to further improve the efficacy of SF-based biomedical diagnostics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The potential of laser-induced fluorescence spectroscopy of atoms is reviewed with emphasis on the determination of absolute densities. Examples of experiments with single-photon and two-photon excitation are presented. Calibration methods applicable with the different schemes are discussed. A new method is presented that has the potential to allow absolute measurement in plasmas of elevated pressure where collisional depletion of the excited state is present.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A fluorescence excitation spectrum of formic acid monomer (HCOOH) , has been recorded in the 278-246 nm region and has been attributed to an n >7r* electron promotion in the anti conformer. The S^< S^ electronic origins of the HCOOH/HCOOD/DCOOH/DCOOD isotopomers were assigned to weak bands observed at 37431.5/37461.5/37445.5/37479.3 cm'''. From a band contour analysis of the 0°^ band of HCOOH, the rotational constants for the excited state were estimated: A'=1.8619, B'=0.4073, and C'=0.3730 cm'\ Four vibrational modes, 1/3(0=0), j/^(0-C=0) , J/g(C-H^^^) and i/,(0-H^yJ were observed in the spectrum. The activity of the antisymmetric aldehyde wagging and hydroxyl torsional modes in forming progressions is central to the analysis, leading to the conclusion that the two hydrogens are distorted from the molecular plane, 0-C=0, in the upper S. state. Ab initio calculations were performed at the 6-3 IG* SCF level using the Gaussian 86 system of programs to aid in the vibrational assignments. The computations show that the potential surface which describes the low frequency OH torsion (twisting motion) and the CH wagging (molecular inversion) motions is complex in the S^ excited electronic state. The OH and CH bonds were calculated to be twisted with respect to the 0-C=0 molecular frame by 63.66 and 4 5.76 degrees, respectively. The calculations predicted the existence of the second (syn) rotamer which is 338 cm'^ above the equilibrium configuration with OH and CH angles displaced from the plane by 47.91 and 41.32 degrees.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Les toxines formeuses de pore (PFTs) sont des protéines exogènes responsables d’un grand nombre de maladies infectieuses qui perméabilisent les membranes cellulaires de leur hôte. La formation des pores ou l’introduction d’une enzyme dans le cytoplasme peut entrainer l’apparition de symptômes de maladies connues (l’anthrax, le botulisme) et, dans le pire des cas, la mort. Les mécanismes d’infection et de destruction des cellules infectées sont bien caractérisés. Toutefois, l’aspect dynamique des changements de conformation durant le processus de perméabilisation reste à découvrir pour la majorité des toxines formeuses de pore. Le but de cette thèse est d’étudier les mécanismes d’oligomérisation des PFTs, ainsi que la formation des pores à la membrane lipidique grâce à la spectroscopie de fluorescence. Nous avons choisi la toxine Cry1Aa, un bio pesticide produit par le bacille de Thuringe et qui a été rigoureusement caractérisé, en tant que modèle d’étude. La topologie de la Cry1Aa à l’état actif et inactif a pu être résolue grâce à l’utilisation d’une technique de spectroscopie de fluorescence, le FRET ou transfert d’énergie par résonance entre un fluorophore greffé au domaine formeur de pore (D1) et un accepteur non fluorescent (le DPA ou dipicrylamine) localisé dans la membrane et qui bouge selon le potentiel membranaire. Le courant électrique, ainsi que la fluorescence provenant de la bicouche lipidique membranaire horizontale ont été enregistrés simultanément. De cette manière, nous avons pu localiser toutes les boucles reliant les hélices de D1 avant et après la formation des pores. Dans la forme inactive de la toxine, toutes ces boucles se trouvent du côté interne de la bicouche lipidique, mais dans sa forme active l’épingle α3-α4 traverse du côté externe, alors que toutes les autres hélices demeurent du côté interne. Ces résultats suggèrent que α3-α4 forment le pore. Nous avons découvert que la toxine change significativement de conformation une fois qu’elle se trouve dans la bicouche lipidique, et que la Cry1Aa attaque la membrane lipidique de l’extérieur, mais en formant le pore de l’intérieur. Dans le but de caractériser la distribution de toxines à chaque extrémité de la bicouche, nous avons utilisé une technique de double FRET avec deux accepteurs ayant des vitesses de translocation différentes (le DPA et l’oxonol) dans la membrane lipidique. De cette manière, nous avons déterminé que la toxine était présente des deux côtés de la bicouche lipidique durant le processus de perméabilisation. La dynamique d’oligomérisation de la toxine dans une bicouche lipidique sans récepteurs a été étudiée avec une technique permettant le compte des sauts de fluorescence après le photoblanchiment des fluorophore liés aux sous unités composant un oligomère présent dans la bicouche lipidique supportée. Nous avons confirmé de cette manière que la protéine formait ultimement des tétramères, et que cet état résultait de la diffusion des monomères de toxine dans la bicouche et de leur assemblage subséquent. Enfin nous avons voulu étudier le « gating » de la colicine Ia, provenant de la bactérie E.Coli, dans le but d’observer les mouvements que font deux positions supposées traverser la bicouche lipidique selon le voltage imposé aux bornes de la bicouche. Nos résultats préliminaires nous permettent d’observer un mouvement partiel (et non total) de ces positions, tel que le suggèrent les études de conductances du canal.