986 resultados para Failure investigation
Resumo:
AIMS Skeletal muscle wasting affects 20% of patients with chronic heart failure and has serious implications for their activities of daily living. Assessment of muscle wasting is technically challenging. C-terminal agrin-fragment (CAF), a breakdown product of the synaptically located protein agrin, has shown early promise as biomarker of muscle wasting. We sought to investigate the diagnostic properties of CAF in muscle wasting among patients with heart failure. METHODS AND RESULTS We assessed serum CAF levels in 196 patients who participated in the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). Muscle wasting was identified using dual-energy X-ray absorptiometry (DEXA) in 38 patients (19.4%). Patients with muscle wasting demonstrated higher CAF values than those without (125.1 ± 59.5 pmol/L vs. 103.8 ± 42.9 pmol/L, P = 0.01). Using receiver operating characteristics (ROC), we calculated the optimal CAF value to identify patients with muscle wasting as >87.5 pmol/L, which had a sensitivity of 78.9% and a specificity of 43.7%. The area under the ROC curve was 0.63 (95% confidence interval 0.56-0.70). Using simple regression, we found that serum CAF was associated with handgrip (R = - 0.17, P = 0.03) and quadriceps strength (R = - 0.31, P < 0.0001), peak oxygen consumption (R = - 0.5, P < 0.0001), 6-min walk distance (R = - 0.32, P < 0.0001), and gait speed (R = - 0.2, P = 0.001), as well as with parameters of kidney and liver function, iron metabolism and storage. CONCLUSION CAF shows good sensitivity for the detection of skeletal muscle wasting in patients with heart failure. Its assessment may be useful to identify patients who should undergo additional testing, such as detailed body composition analysis. As no other biomarker is currently available, further investigation is warranted.
Resumo:
OBJECTIVES Left ventricular assist devices are an important treatment option for patients with heart failure alter the hemodynamics in the heart and great vessels. Because in vivo magnetic resonance studies of patients with ventricular assist devices are not possible, in vitro models represent an important tool to investigate flow alterations caused by these systems. By using an in vitro magnetic resonance-compatible model that mimics physiologic conditions as close as possible, this work investigated the flow characteristics using 4-dimensional flow-sensitive magnetic resonance imaging of a left ventricular assist device with outflow via the right subclavian artery as commonly used in cardiothoracic surgery in the recent past. METHODS An in vitro model was developed consisting of an aorta with its supra-aortic branches connected to a left ventricular assist device simulating the pulsatile flow of the native failing heart. A second left ventricular assist device supplied the aorta with continuous flow via the right subclavian artery. Four-dimensional flow-sensitive magnetic resonance imaging was performed for different flow rates of the left ventricular assist device simulating the native heart and the left ventricular assist device providing the continuous flow. Flow characteristics were qualitatively and quantitatively evaluated in the entire vessel system. RESULTS Flow characteristics inside the aorta and its upper branching vessels revealed that the right subclavian artery and the right carotid artery were solely supported by the continuous-flow left ventricular assist device for all flow rates. The flow rates in the brain-supplying arteries are only marginally affected by different operating conditions. The qualitative analysis revealed only minor effects on the flow characteristics, such as weakly pronounced vortex flow caused by the retrograde flow via the brachiocephalic artery. CONCLUSIONS The results indicate that, despite the massive alterations in natural hemodynamics due to the retrograde flow via the right subclavian and brachiocephalic arteries, there are no drastic consequences on the flow in the brain-feeding arteries and the flow characteristics in the ascending and descending aortas. It may be beneficial to adjust the operating condition of the left ventricular assist device to the residual function of the failing heart.
Resumo:
PURPOSE The objective of this study was to evaluate stiffness, strength, and failure modes of monolithic crowns produced using computer-aided design/computer-assisted manufacture, which are connected to diverse titanium and zirconia abutments on an implant system with tapered, internal connections. MATERIALS AND METHODS Twenty monolithic lithium disilicate (LS2) crowns were constructed and loaded on bone level-type implants in a universal testing machine under quasistatic conditions according to DIN ISO 14801. Comparative analysis included a 2 × 2 format: prefabricated titanium abutments using proprietary bonding bases (group A) vs nonproprietary bonding bases (group B), and customized zirconia abutments using proprietary Straumann CARES (group C) vs nonproprietary Astra Atlantis (group D) material. Stiffness and strength were assessed and calculated statistically with the Wilcoxon rank sum test. Cross-sections of each tested group were inspected microscopically. RESULTS Loaded LS2 crowns, implants, and abutment screws in all tested specimens (groups A, B, C, and D) did not show any visible fractures. For an analysis of titanium abutments (groups A and B), stiffness and strength showed equally high stability. In contrast, proprietary and nonproprietary customized zirconia abutments exhibited statistically significant differences with a mean strength of 366 N (Astra) and 541 N (CARES) (P < .05); as well as a mean stiffness of 884 N/mm (Astra) and 1,751 N/mm (CARES) (P < .05), respectively. Microscopic cross-sections revealed cracks in all zirconia abutments (groups C and D) below the implant shoulder. CONCLUSION Depending on the abutment design, prefabricated titanium abutment and proprietary customized zirconia implant-abutment connections in conjunction with monolithic LS2 crowns had the best results in this laboratory investigation.
Resumo:
BACKGROUND Recent technical development allows the digital manufacturing of monolithic reconstructions with high-performance materials. For implant-supported crowns, the fixation requires an abutment design onto which the reconstruction can be bonded. PURPOSE The aim of this laboratory investigation was to analyze stiffness, strength, and failure modes of implant-supported, computer-assisted design and computer-aided manufacturing (CAD/CAM)-generated resin nano ceramic (RNC) crowns bonded to three different titanium abutments. MATERIALS AND METHODS Eighteen monolithic RNC crowns were produced and loaded in a universal testing machine under quasi-static condition according to DIN ISO 14801. With regard to the type of titanium abutment, three groups were defined: (1) prefabricated cementable standard; (2) CAD/CAM-constructed individualized; and (3) novel prefabricated bonding base. Stiffness and strength were measured and analyzed statistically with Wilcoxon rank sum test. Sections of the specimens were examined microscopically. RESULTS Stiffness demonstrated high stability for all specimens loaded in the physiological loading range with means and standard deviations of 1,579 ± 120 N/mm (group A), 1,733 ± 89 N/mm (group B), and 1,704 ± 162 N/mm (group C). Mean strength of the novel prefabricated bonding base (group C) was 17% lower than of the two other groups. Plastic deformations were detectable for all implant-abutment crown connections. CONCLUSIONS Monolithic implant crowns made of RNC seem to represent a feasible and stable prosthetic construction under laboratory testing conditions with strength higher than the average occlusal force, independent of the different abutment designs used in this investigation.
Resumo:
We extend and apply theories of filled foam elasticity and failure to recently available data on foods. The predictions of elastic modulus and failure mode dependence on internal pressure and on wall integrity are borne out by photographic evidence of distortion and failure under compressive loading and under the localized stress applied by a knife blade, and by mechanical data on vegetables differing only in their turgor pressure. We calculate the dry modulus of plate-like cellular solids and the cross over between dry-like and fully fluid-filled elastic response. The bulk elastic properties of limp and aging cellular solids are calculated for model systems and compared with our mechanical data, which also show two regimes of response. The mechanics of an aged, limp beam is calculated, thus offering a practical procedure for comparing experiment and theory. This investigation also thereby offers explanations of the connection between turgor pressure and crispness and limpness of cellular materials.
Resumo:
Decreasing vehicle understeer was strongly associated with the likelihood of control loss following both the unexpected and expected tire failures. Knowledge of the imminent tread separation reduced the overall probability of control loss from 55% to 20% and had a significant effect on how quickly drivers responded as well as on the nature of their initial responses (i.e., steering orbraking). Driver age was marginally associated with increased likelihood of vehicle control loss, but only on unexpected trials. Vehicle speed at the time of first steering input also contributed to the probability of control loss. Neither the location of the tire that failed (left rear vs. right rear) nor the specific instructions about how best to respond to the tread separation influenced the probability of control loss. Differences associated with vehicle understeer conditions observed in the present study were large and consistent, independent of driver expectations and across driver age groups. It is thus fair to conclude that in the event of a complete rear-tire detread, the increased difficulty in vehicle handling and the associated increased likelihood of loss of vehicle control with decreasing vehicle understeer generalize to real-world driving.
Resumo:
The scope of this technical report is to establish the mechanisms by which the eastbound lanes of Interstate 82 at mile post (MP) 91.9 near Benton City continue to deform. Within the Washington State Department of Transportation (WSDOT), the area is known as the Prosser Landslide and has been an ongoing concern since the 1980s. Results from previous technical investigations have been conflicted or inconclusive as to whether landslide movement persists beneath or through the shear key-buttress or that pavement distress is related to swelling of a clay-rich unit that underlies the slope and interstate. For this report, the following steps were taken. First, I conducted a desk review of archived reports, memos, data, and drill logs from the original construction of I-82 and previous geotechnical investigations commissioned by WSDOT. Findings of this desk review are reported in Part III. Second, WSDOT drillers drilled two new boreholes at the Prosser Landslide site above the buttress and instrumentation was installed within the boreholes. Borehole logs produced from the 2013 drilling can be found in Appendix A of this report. Material retrieved from the suspected failure zone during drilling was tested at the WSDOT Materials Lab by WSDOT personnel for its mechanical properties including Atterberg limits, grain-size analysis, and residual shear strength (Appendix B). Samples were also analyzed for mineral content using X -ray powder diffraction (XRD). These data and observations are reported in Part III and Appendix C. Finally, using drill logs produced by WSDOT from the latest drilling and from historic drilling campaigns, I constructed a 2-D geologic model of the landslide site. This model is the basis for slope stability analysis reported in Part IV and Appendix D. This study concludes that the deformation observed in the eastbound lanes of I-82 could be the result of continued landslide movement, despite previous remediation efforts.
Resumo:
The in vitro growth of erythroid colonies in the absence of erythropoietin, known as endogenous erythroid colonies (EEC) forms part of the diagnostic criteria for polycythaemia vera (PV). The availability of EEC culture in routine laboratory setting is limited as culture methods are technically demanding, difficult to standardize, expensive and laborious. In this study, we assessed the performance characteristics of a simplified method using ammonium chloride red cell lysis followed by culture on commercially available, batch-tested, methylcellulose media. Seventy-six patients were included; four were secondarily excluded on the basis of culture failure. Of the 14 patients with PV, 13 (93%) were positive for EEC on at least one occasion: 90% (nine of 10) of bone marrow and 67% (six of nine) of peripheral blood specimens were positive. All 30 patients with secondary polycythaemia (n = 12) or apparent polycythaemia (n = 18) were negative for EEC. The incidence of EEC in idiopathic erythrocytosis was 40% (eight of 28); 50% (five of 10) in those who met one of the minor criteria for PV and 17% (three of 18) in those who did not. We conclude that our EEC assay yield results comparable with that of more elaborate methods.
Resumo:
Objective: The goal of this investigation was to examine the level of notification of child abuse and neglect and the perceived deterrents to reporting by medical practitioners, who a're mandated to report their suspicions but might choose not to do so. Design: A random sample of medical practitioners was surveyed. About three hundred medical practitioners were approached through the local Division of General Practice. 91 registered medical practitioners in Queensland, Australia, took part in the study. Results: A quarter of medical practitioners admitted failing to report suspicions, though they were mostly cognisant of their responsibility to report suspected cases of abuse and neglect. Only the belief that the suspected abuse was a single incident and unlikely to happen again predicted non-reporting (X2 [1, N =89] =7.60, p
Resumo:
Mechanical, physical and chemical changes in the surface of commercial thin film metal evaporated magnetic recording media have been correlated to recording error and signal degradation measurements. Modified and adapted commercial Hi-8 video recorders have been used for sample generation whilst analytical techniques such as SXPS,IMS and SEM have been employed in the surface characterisation. The durability of the media was assessed through stop motion (still frame) and cycling tests, where error growth and signal degradation were measured as a function of running time. The tests were performed under ambient (22°C, 40% RH) and high humidity (22°C, 80% RH) conditions. Characterisation of the lubricant layer on each tape was performed through models based on XPS and angle resolved XPS. The lubricant thickness can significantly affect the durability and signal output level of a thin film tape and thus it is important that reliable quantification can be achieved. Various models were considered for determining the lubricant thickness although ultimately, the most suitable technique was deemed to be a model that assumed a uniform layer structure. In addition to thin film metal evaporated media, equivalent durability tests and surface analysis experiments were performed using a commercial metal particle tape in order that comparisons could be made between the two types of recording media. The signal performance of the thin film metal evaporated media was found to be quite different from that for the metal particle tape since dropout errors and signal degradation increased at a much earlier stage. Extensive surface analyses enabled the mechanisms responsible for media failure and error growth to be identified in the ME and MP tapes and these were found to result from cyclic stressing and fatigue on the immediate substrate of the media.
Resumo:
Several roads in Iceland with bio-oil modified surface dressings exhibited severe distresses such as bleeding, binder drain down, and eventually as surface dressing sticking to tires. Samples from six road sections were evaluated in the laboratory to determine the causes of the failure. Binders with and without bio-oil, rapeseed oil and fish oil, were evaluated through a comprehensive rheological and chemical characterization. Both oils, exhibited solubility issues with the bitumen; consequently, the oils covered the aggregates, preventing bonding between binder and stones. It appears that fish oil worked a little better than rapeseed oil for binder modification.
Resumo:
Cardiovascular diseases (CVD) contributed to almost 30% of worldwide mortality; with heart failure being one class of CVD. One popular and widely available treatment for heart failure is the intra-aortic balloon pump (IABP). This heart assist device is used in counterpulsation to improve myocardial function by increasing coronary perfusion, and decreasing aortic end-diastolic pressure (i.e. the resistance to blood ejection from the heart). However, this device can only be used acutely, and patients are bedridden. The subject of this research is a novel heart assist treatment called the Chronic Intermittent Mechanical Support (CIMS) which was conceived to offer advantages of the IABP device chronically, whilst overcoming its disadvantages. The CIMS device comprises an implantable balloon pump, a percutaneous drive line, and a wearable driver console. The research here aims to determine the haemodynamic effect of balloon pump activation under in vitro conditions. A human mock circulatory loop (MCL) with systemic and coronary perfusion was constructed, capable of simulating various degrees of heart failure. Two prototypes of the CIMS balloon pump were made with varying stiffness. Several experimental factors (balloon inflation/deflation timing, Helium gas volume, arterial compliance, balloon pump stiffness and heart valve type) form the factorial design experiments. A simple modification to the MCL allowed flow visualisation experiments using video recording. Suitable statistical tests were used to analyse the data obtained from all experiments. Balloon inflation and deflation in the ascending aorta of the MCL yielded favourable results. The sudden balloon deflation caused the heart valve to open earlier, thus causing longer valve opening duration in a cardiac cycle. It was also found that pressure augmentation in diastole was significantly correlated with increased cardiac output and coronary flowrate. With an optimum combination (low arterial compliance and low balloon pump stiffness), systemic and coronary perfusions were increased by 18% and 21% respectively, while the aortic end-diastolic pressure (forward flow resistance) decreased by 17%. Consequently, the ratio of oxygen supply and demand to myocardium (endocardial viability ratio, EVR) increased between 33% and 75%. The increase was mostly attributed to diastolic augmentation rather than systolic unloading.
Resumo:
In part 1 of this article, cleavage initiation in the intercritically reheated coarse-grained heat affected zone (IC CG HAZ) of high-strength low-alloy (HSLA) steels was determined to occur between two closely spaced blocky MA particles. Blunt notch, crack tip opening displacement (CTOD), and precracked Charpy testing were used in this investigation to determine the failure criteria required for cleavage initiation to occur by this mechanism in the IC CG HAZ. It was found that the attainment of a critical level of strain was required in addition to a critical level of stress. This does not occur in the case of high strain rate testing, for example, during precracked Charpy testing. A different cleavage initiation mechanism is then found to operate. The precise fracture criteria and microstructural requirements (described in part I of this article) result in competition between potential cleavage initiation mechanisms in the IC CG HAZ.
Resumo:
Left ventricular diastolic dysfunction leads to heart failure with preserved ejection fraction, an increasingly prevalent condition largely driven by modern day lifestyle risk factors. As heart failure with preserved ejection fraction accounts for almost one-half of all patients with heart failure, appropriate nonhuman animal models are required to improve our understanding of the pathophysiology of this syndrome and to provide a platform for preclinical investigation of potential therapies. Hypertension, obesity, and diabetes are major risk factors for diastolic dysfunction and heart failure with preserved ejection fraction. This review focuses on murine models reflecting this disease continuum driven by the aforementioned common risk factors. We describe various models of diastolic dysfunction and highlight models of heart failure with preserved ejection fraction reported in the literature. Strengths and weaknesses of the different models are discussed to provide an aid to translational scientists when selecting an appropriate model. We also bring attention to the fact that heart failure with preserved ejection fraction is difficult to diagnose in animal models and that, therefore, there is a paucity of well described animal models of this increasingly important condition.
Resumo:
Background: The ageing population, with concomitant increase in chronic conditions, is increasing the presence of older people with complex needs in hospital. People with dementia are one of these complex populations and are particularly vulnerable to complications in hospital. Registered nurses can offer simultaneous assessment and intervention to prevent or mitigate hospital-acquired complications through their skilled brokerage between patient needs and hospital functions. A range of patient outcome measures that are sensitive to nursing care has been tested in nursing work environments across the world. However, none of these measures have focused on hospitalised older patients. Method: This thesis explores nursing-sensitive complications for older patients with and without dementia using an internationally recognised, risk-adjusted patient outcome approach. Specifically explored are: the differences between rates of complications; the costs of complications; and cost comparisons of patient complexity. A retrospective cohort study of an Australian state’s 2006–07 public hospital discharge data was utilised to identify patient episodes for people over age 50 (N=222,440) where dementia was identified as a primary or secondary diagnosis (N=44,422). Extra costs for patient episodes were estimated based on length of stay (LOS) above the average for each patient’s Diagnosis Related Group (DRG) (N=157,178) and were modelled using linear regression analysis to establish the strongest patient complexity predictors of cost. Results: Hospitalised patients with a primary or secondary diagnosis of dementia had higher rates of complications than did their same-age peers. The highest rates and relative risk for people with dementia were found in four key complications: urinary tract infections; pressure injuries; pneumonia, and delirium. While 21.9% of dementia patients (9,751/44,488, p<0.0001) suffered a complication, only 8.8% of non-dementia patients did so (33,501/381,788, p<0.0001), giving dementia patients a 2.5 relative risk of acquiring a complication (p<0.0001). These four key complications in patients over 50 both with and without dementia were associated with an eightfold increase in length of stay (813%, or 3.6 days/0.4 days) and double the increased estimated mean episode cost (199%, or A$16,403/ A$8,240). These four complications were associated with 24.7% of the estimated cost of additional days spent in hospital in 2006–07 in NSW (A$226million/A$914million). Dementia patients accounted for 22.0% of these costs (A$49million/A$226million) even though they were only 10.4% of the population (44,488/426,276 episodes). Hospital-acquired complications, particularly for people with a comorbidity of dementia, cost more than other kinds of inpatient complexity but admission severity was a better predictor of excess cost. Discussion: Four key complications occur more often in older patients with dementia and the high rate of these complications makes them expensive. These complications are potentially preventable. However, the care that can prevent them (such as mobility, hydration, nutrition and communication) is known to be rationed or left unfinished by nurses. Older hospitalised people who have complex needs, such as those with dementia, are more likely to experience care rationing as their care tends to take longer, be less predictable and less curative in nature. This thesis offers the theoretical proposition that evidence-based nursing practices are rationed for complex older patients and that this rationed care contributes to functional and cognitive decline during hospitalisation. This, in turn, contributes to the high rates of complications observed. Thus four key complications can be seen as a ‘Failure to Maintain’ complex older people in hospital. ‘Failure to Maintain’ is the inadequate delivery of essential functional and cognitive care for a complex older person in hospital resulting in a complication, and is recommended as a useful indicator for hospital quality. Conclusions: When examining extra length of stay in hospital, complications and comorbid dementia are costly. Complications are potentially preventable, and dementia care in hospitals can be improved. Hospitals and governments looking to decrease costs can engage in risk-reduction strategies for common nurse sensitive complications such as healthy nursing work environments that minimise nurses’ rationing of functional and cognitive care. The conceptualisation of complex older patients as ‘business as usual’ rather than a ‘burden’ is likely necessary for sustainable health care services of the future. The use of the ‘Failure to Maintain’ indicators at institution and state levels may aid in embedding this approach for complex older patients into health organisations. Ongoing investigation is warranted into the relationships between the largest health services expense (hospitals), the largest hospital population (complex older patients), and the largest hospital expense (nurses). The ‘Failure to Maintain’ quality indicator makes a useful and substantive contribution to further clinical, administrative and research developments.