852 resultados para Fabrication of polymer optical fibres


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mode-area, scaling properties of helical-core optical fibres are numerically studied and the limit of core size for achievable single-mode operation is explored. By appropriate design, helical-core fibres can operate in a single mode with possible scaling up to 300 mu m in core diameter with numerical aperture 0.1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel optical switching matrix measuring 1×2 mm2 in size is fabricated. The switching matrix is composed of waveguides, four 1×4 multimode interference (MMI) splitters, 32 total internal refraction mirrors and four 4×1 MMI combiners with the extremely compact size of 1×2 mm2. This integrated device are assessed and loss contribution measured from test structure is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have fabricated an ultra-compact 4×4 optical matrix on InP/InGaAsP material. 1×4 MMI couplers and TIR mirrors are employed to produce a compact 1×2 mm2 device. A CH4/H2/O2 RIE dry etch process has been used to realize two-level dry etching: deep-etch for both the MMI couplers and the mirrors and shallow-etch for the rest of the routing waveguides. It was found that a metal/dielectric bilayer mask is essential for multi-dry-etch processes and high profile verticality. We have found a Ti intermediate mask for the deep-etch process which is removable by SF6 dry-etch before the following shallow process. Dry-etch removal of the intermediate mask is necessary to protect the deep-etched mirror sidewall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modified gel-casting technique was used to fabricate a 1-3 piezoelectric ceramic/polymer composite substrate formed by irregular-shaped pillar arrays of small dimensions and kerfs. This technique involves the polymerization of aqueous piezoelectric (PZT) suspensions with added water-soluble epoxy resin and polyamine-based hardener that lead to high strength, high density and resilient ceramic bodies. Soft micromoulding was used to shape the ceramic segments, and micropillars with lateral features down to 4 m and height-to-width aspect ratios of ∼10 were achieved. The composite exhibited a clear thickness resonance mode at approximately 70 MHz and a k eff ∼ 0.51, demonstrating that the ceramic micropillars possess good electrical properties. Furthermore, gel-casting allows the fabrication of ceramic structures with non-conventional shapes; hence, device design is not limited by the standard fabrication methods. This is of particular benefit for high-frequency transducers where the critical design dimensions are reduced. © 2012 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vanadium dioxide thin films were fabricated by ion beam sputtering on Si3N4/SiO2/Si after a post reductive annealing process in a nitrogen atmosphere. X-ray Diffraction (XRD), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS) were employed to analyze the effects of post annealing temperature on crystallinity, morphology, and composition of the vanadium oxide thin films. Transmission properties of vanadium dioxide thin films were measured by Fourier transform-infrared (FT-IR) spectroscopy. The results showed that the as-deposited vanadium oxide thin films were composed of non-crystalline V2O5 and a tetragonal rutile VO2. After annealing at 400 degrees C for 2 h, the mixed phase vanadium oxide (VOx) thin film changed its composition and structure to VO2 and had a (011) oriented monoclinic rutile structure. When increasing the temperature to 450 degrees C, nano VO2 thin films with smaller grains were obtained. FT-IR results showed that the transmission contrast factor of the nano VO2 thin film was more than 0.99 and the transmission of smaller grain nano VO2 thin film was near zero at its switched state. Nano VO2 thin film with smaller grains is an ideal material for application in optical switching devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A folding nonblocking 4 X 4 optical matrix switch in simplified-tree architecture was designed and fabricated on a silicon-on-insulator wafer. To compress chip size, switch elements (SEs) were connected by total internal reflection mirrors instead of conventional S-bends. For obtaining smooth interfaces, potassium hydroxide (KOH) anisotropic chemical etching of silicon was employed. The device has a compact size of 20 X 3.2 mm(2) and a fast response of 8 +/- 1 mu s. Power consumption of 2 x 2 SE and excess loss per mirror were 145 mW and -1.1 dB, respectively. (c) 2005 Society of Photo-Optical Instrumentation Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A type of thermo-optic variable optical attenuator based on multimode interference coupler is proposed. The optical field propagation properties of the devices are simulated using finite difference beam propagation method. The propagation loss of the fabricated device is 2-4.2 dB at the wavelength range 1510-1610 nm. The total power consumption is 370 mW and the maximum attenuation is more than 25 dB, which almost can meet the requirements of optical fiber communication systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polyetherketone (PEK-c) guest-host polymer planar waveguides doped with (4'-nitro)-3-azo-9-ethyl-carbazole (NAEC) were prepared. The waveguide films were poled by corona-onset poling at elevated temperature (COPET), and the corona poling setup includes a grid voltage making the surface-charge distribution uniform. By using the prism-in coupling method, the dark-line spectrum given by the reflected intensity versus the angle of incidence have been obtained, and the optical transmission losses of mth modes have been measured for the poled polymer waveguides at lambda = 632.8 nm. The measurement result showed that the optical loss of the fundamental mode is less than 0.7 dB cm(-1) for the TE polarization. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we report the fabrication of 1.3 mum Si-based MEMS tunable optical filter, by surface micromaching. Through wet etching of polyimide sacrificial layer, a tunable Fabry-Perot filter was successfully fabricated. We make the capacitance measurement of the prototype device, compare the experimental curve with the theoretical one, and explain the difference between them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polarization-insensitive semiconductor optical amplifiers (SOA's) with tensile-strained multi-quantum-wells as actice regions are designed and fabricated. The 6x6 Luttinger-Kohn model and Bir-Pikus Hamiltonian are employed to calculate the valence subband structures of strained quantum wells, and then a Lorentzian line-shape function is combined to calculate the material gain spectra for TE and TM modes. The device structure for polarization insensitive SOA is designed based on the materialde gain spectra of TE and TM modes and the gain factors for multilayer slab waveguide. Based on the designed structure parameters, we grow the SOA wafer by MOCVD and get nearly magnitude of output power for TE and TM modes from the broad-area semiconductor lasers fabricated from the wafer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A type of thermo-optic variable optical attenuator based on multimode interference coupler is proposed. The optical field propagation properties of the devices are simulated using finite difference beam propagation method. The propagation loss of the fabricated device is 2-4.2 dB at the wavelength range 1510-1610 nm. The total power consumption is 370 mW and the maximum attenuation is more than 25 dB, which almost can meet the requirements of optical fiber communication systems.