996 resultados para FREQUENCY-DOUBLING LASER
Resumo:
We propose a new approach for secret key exchange involving the variation of the cavity length of an ultra-long fibre laser. The scheme is based on the realisation that the free spectral range of the laser cavity can be used as an information carrier. We present a proof-of-principle demonstration of this new concept using a 50-km-long fibre laser to link two users, both of whom can randomly add an extra 1-km-long fibre segment.
Resumo:
In this paper, we present a novel 1x2 multi-mode-interferometer-Fabry-Perot (MMI-FP) laser diode, which demonstrated tunable single frequency operation with more than 30dB side mode suppression ratio (SMSR) and a tuning range of 25nm in the C and L bands, as well as a 750 kHz linewidth. These lasers do not require material regrowth and high resolution gratings; resulting in a simpler process that can significantly increase the yield and reduce the cost.
Resumo:
Infrared-to-visible and infrared-to-infrared frequency upconversion processes in Yb(3+)-Tm(3+) doped PbO-GeO(2) glasses containing silver nanoparticles (NPs) were investigated. The experiments were performed by exciting the samples with a diode laser operating at 980 nm (in resonance with the Yb(3+) transition (2)F(7/2)->(2)F(5/2)) and observing the photoluminescence (PL) in the visible and infrared regions due to energy transfer from Yb(3+) to Tm(3+) ions followed by excited state absorption in the Tm3+ ions. The intensified local field in the vicinity of the metallic NPs contributes for enhancement in the PL intensity at 480 nm (Tm(3+) :(1)G(4)->(3)H(6)) and at 800 nm (Tm(3+) : (3)H(4) -> (3)H(6)). (C) 2009 American Institute of Physics. [doi:10.1063/1.3211300]
Resumo:
A frequency upconversion process in Pr(3+) doped TeO(2)-ZnO glasses containing silver nanoparticles is studied under excitation with a nanosecond laser operating at 590 nm, in resonance with the (3)H(4)-->(1)D(2) transition. The excited Pr(3+) ions exchange energy in the presence of the nanoparticles, originating efficient conversion from orange to blue. The enhancement in the intensity of the luminescence at similar to 482 nm, corresponding to the (3)P(0)-->(3)H(4) transition, is due to the influence of the large local field on the Pr(3+) ions, which are located near the metallic nanoparticles. (C) 2008 American Institute of Physics.
Resumo:
Background Data and Objective: Oral mucositis (OM) is one of the worst cytotoxic effects of chemotherapy and radiotherapy in patients undergoing hematopoietic cell transplantation (HCT), and it causes severe morbidity. Laser phototherapy has been considered as an alternative therapy for prevention and treatment of OM. The aim of this study was to describe the incidence and severity of OM in HCT patients subjected to laser phototherapy, and to discuss its effect on the oral mucosa. Patients and Methods: Information concerning patient age and gender, type of basic disease, conditioning regimen, type of transplant, absence or presence of pain related to the oral cavity, OM grade, and adverse reactions or unusual events were collected from 30 patients undergoing HCT (allogeneic or autologous). These patients were given oral laser phototherapy with a InGaAIP laser (660 nm and 40 mW) daily. The data were tabulated and their frequency expressed as percentages. Results: In the analysis of those with OM, it was observed that 33.4% exhibited grade I, 40% grade II, 23.3% grade III, and 3.3% grade IV disease. On the most critical post-HCT days (D+5 and D+8), it was observed that 63.3% of patients had grade I and 33.3% had grade II disease; no patients had grade III or IV disease in this period. This severity of OM was similar to that seen in other studies of laser phototherapy and OM. Conclusion: The low grades of OM observed in this survey show the beneficial effects of laser phototherapy, but randomized clinical trials are necessary to confirm these findings.
Resumo:
We report the microwave dielectric properties and photoluminescence of undoped and europium oxide doped Ta(2)O(5) fibers, grown by laser heated pedestal growth technique. The effects of Eu(2)O(3) doping (1-3 mol %) on the structural, optical, and dielectric properties were investigated. At a frequency of 5 GHz, the undoped material exhibits a dielectric permittivity of 21 and for Eu(2)O(3) doped Ta(2)O(5) samples it increases, reaching up to 36 for the highest doping concentration. Nevertheless, the dielectric losses maintain a very low value. For this wide band gap oxide, Eu(3+) optical activation was achieved and the emission is observed up to room temperature. Thus, the transparency and high permittivity make this material promising for electronic devices and microwave applications. (c) 2008 American Institute of Physics.
Resumo:
The nonlinear response of a chaotic system to a chaotic variation in a system parameter is investigated experimentally. Clear experimental evidence of frequency entrainment of the chaotic oscillations is observed. We show that analogous to the frequency locking between coupled periodic oscillations, this effect is generic for coupled chaotic systems.
Resumo:
Control of chaos in the single-mode optically pumped far-infrared (NH3)-N-15 laser is experimentally demonstrated using continuous time-delay control. Both the Lorenz spiral chaos and the detuned period-doubling chaos exhibited by the laser have been controlled. While the laser is in the Lorenz spiral chaos regime the chaos has been controlled both such that the laser output is cw, with corrections of only a fraction of a percent necessary to keep it there, and to period one. The laser has also been controlled while in the period-doubling chaos regime, to both the period-one and -two states.
Resumo:
BACKGROUND AND OBJECTIVE: To compare the results of preoperative Nd:YAG laser anterior capsulotomy versus two-stage continuous curvilinear capsulorhexis (CCC) in phacoemulsification of eyes with white intumescent cataracts and liquefied cortex. PATIENTS AND METHODS: Twenty-three eyes with white intumescent cataract were consecutively randomized for phacoemulsification with preoperative Nd:YAG laser anterior capsulotomy (group 1, n = 11) or two-stage CCC (group 2, n = 12) procedures. Intraoperative findings and postoperative outcomes were compared using the nonparametric tests. RESULTS: Postoperative Visual acuity, mean surgical time, mean effective phacoemulsification time, and frequency of complications were not significantly different between the two groups (P > .05). Two cases in each group were converted to the extracapsular technique. Excluding these four patients, surgical time was shorter In group 1 (P = .017). CONCLUSION: Preoperative Nd:YAG laser anterior capsulotomy is a safe technique in decompressing the capsular bag before phacoemulsification of white intumescent cataracts with liquefied cortex.
Resumo:
Aim To evaluate the bond strength of AH Plus and Epiphany sealers to human root canal dentine irradiated with a 980 nm diode laser at different power and frequency parameters, using the push-out test. Methodology Sixty canine roots were sectioned below the cementoenamel junction to provide 4-mm-thick dentine discs that had their root canals prepared with a tapered bur and irrigated with sodium hypochlorite, ethylenediaminetetraacetic acid and distilled water. The specimens were assigned to five groups (n = 12): one control (no laser) and four experimental groups that were submitted to 980 nm diode laser irradiation at different power (1.5 and 3.0 W) and frequency (continuous wave and 100 Hz) parameters. Half of specimens in each group had their canals filled with AH Plus sealer and half with Epiphany. The push-out test was performed and data (MPa) were analysed statistically by ANOVA and Tukey`s test (P < 0.05). The specimens were split longitudinally and examined under SEM to assess the failure modes after sealer displacement. Results The specimens irradiated with the diode laser and filled with AH Plus had significantly higher bond strength values (8.69 +/- 2.44) than those irradiated and filled with Epiphany (3.28 +/- 1.58) and the nonirradiated controls (3.86 +/- 0.60). The specimens filled with Epiphany did not differ significantly to each other or to the control (1.75 +/- 0.69). There was a predominance of adhesive failures at Epiphany-dentine interface (77%) and mixed failures at AH Plus-dentine interface (67%). Conclusions The 980 nm diode laser irradiation of root canal dentine increased the bond strength of AH Plus sealer, but did not affect the adhesion of Epiphany sealer.
Resumo:
Objective: To assess the temperature variation in the cervical, middle and apical thirds of root external wall, caused by 980-nm diode laser irradiation with different parameters. Methods: The roots of 90 canines, had their canals instrumented and were randomly distributed into 3 groups (n = 30) according to the laser potency (1.5 W, 3.0 W and 5.0 W). Each group was subdivided into 3 (n = 10) according to the frequency (CM, 100 Hz and 1000 Hz), and each subgroup divided into 2 (n = S): dried canal or filled with distilled water. The maximum temperature values were collected by 3 thermocouples located at each third of the root external wall and recorded by digital thermometers. Results: The groups irradiated in the continuous mode (CM) presented the highest values (11.82 +/- 5.78), regardless of the canals were dry or not, which were statistically different (p < 0.01) from those obtained with 100 Hz (6.22 +/- 3.64) and 1000 Hz (6.00 +/- 3.36), which presented no statistical difference between them (p > 0.01). The groups irradiated with 5.0 W presented the greatest temperature variation (12.15 +/- 5.14), followed by 3.0 W (7.88 +/- 3.92) and 1.5 W (4.02 +/- 2.16), differing between them (p < 0.01). The cervical third of the root presented the highest temperature rises (9.68 +/- 5.80), followed by the middle (7.66 +/- 4.87) and apical (6.70 +/- 4.23), with statistical difference among them (p < 0.01). After 30 s from the end of irradiation, all the specimens presented temperature variation lower than 10 degrees C. Conclusions: Application of 980-nm diode laser in the root, at 1.5 W in all operating modes, and 3.0 W, in the pulsed mode, for 20 s, can safely be used in endodontic treatment, irrespective of the presence of humidity. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A 250 mum diameter fibre of ytterbium-doped ZBLAN was cooled by 13 K from room temperature. The cooling was performed in vacuum to limit the thermal load on the fibre. 0.85 W of laser light at 1015 nm was coupled into the fibre. The ytterbium ions absorbed this light, and the excited atoms thermalized phononically and on average emitted light at a wavelength of 996 nm. Since the quantum efficiency of the transition was high, this resulted in a net loss of energy from the glass, producing net bulk cooling.
Resumo:
Large area n-i-p-n-i-p a-SiC:H heterostructures are used as sensing element in a double colour laser scanned photodiode image sensor (D/CLSP). This work aims to clarify possible improvements, physical limits and performance of CLSP image sensor when used as non-pixel image reader. Here, the image capture device and the scanning reader are optimized and the effects of the sensor structure on the output characteristics discussed. The role of the design of the sensing element, the doped layer composition and thickness, the read-out parameters (applied voltage and scanner frequency) on the image acquisition and the colour detection process are analysed. A physical model is presented and supported by a numerical simulation of the output characteristics of the sensor.
Resumo:
Large area n-i-p-n-i-p a-SiC:H heterostructures are used as sensing element in a Double Color Laser Scanned Photodiode image sensor (D/CLSP). This work aims to clarify possible improvements, physical limits and performance of CLSP image sensor when used as non-pixel image reader. Here, the image capture device and the scanning reader are optimized and the effects of the sensor structure on the output characteristics discussed. The role of the design of the sensing element, the doped layer composition and thickness, the read-out parameters (applied voltage and scanner frequency) on the image acquisition and the color detection process are analyzed. A physical model is presented and supported by a numerical simulation of the output characteristics of the sensor.