95 resultados para FRACTAIS
Resumo:
Difusive processes are extremely common in Nature. Many complex systems, such as microbial colonies, colloidal aggregates, difusion of fluids, and migration of populations, involve a large number of similar units that form fractal structures. A new model of difusive agregation was proposed recently by Filoche and Sapoval [68]. Based on their work, we develop a model called Difusion with Aggregation and Spontaneous Reorganization . This model consists of a set of particles with excluded volume interactions, which perform random walks on a square lattice. Initially, the lattice is occupied with a density p = N/L2 of particles occupying distinct, randomly chosen positions. One of the particles is selected at random as the active particle. This particle executes a random walk until it visits a site occupied by another particle, j. When this happens, the active particle is rejected back to its previous position (neighboring particle j), and a new active particle is selected at random from the set of N particles. Following an initial transient, the system attains a stationary regime. In this work we study the stationary regime, focusing on scaling properties of the particle distribution, as characterized by the pair correlation function ø(r). The latter is calculated by averaging over a long sequence of configurations generated in the stationary regime, using systems of size 50, 75, 100, 150, . . . , 700. The pair correlation function exhibits distinct behaviors in three diferent density ranges, which we term subcritical, critical, and supercritical. We show that in the subcritical regime, the particle distribution is characterized by a fractal dimension. We also analyze the decay of temporal correlations
Resumo:
A posição que a renomada estatí stica de Boltzmann-Gibbs (BG) ocupa no cenário cientifíco e incontestável, tendo um âmbito de aplicabilidade muito abrangente. Por em, muitos fenômenos físicos não podem ser descritos por esse formalismo. Isso se deve, em parte, ao fato de que a estatística de BG trata de fenômenos que se encontram no equilíbrio termodinâmico. Em regiões onde o equilíbrio térmico não prevalece, outros formalismos estatísticos devem ser utilizados. Dois desses formalismos emergiram nas duas ultimas décadas e são comumente denominados de q-estatística e k-estatística; o primeiro deles foi concebido por Constantino Tsallis no final da década de 80 e o ultimo por Giorgio Kaniadakis em 2001. Esses formalismos possuem caráter generalizador e, por isso, contem a estatística de BG como caso particular para uma escolha adequada de certos parâmetros. Esses dois formalismos, em particular o de Tsallis, nos conduzem também a refletir criticamente sobre conceitos tão fortemente enraizados na estat ística de BG como a aditividade e a extensividade de certas grandezas físicas. O escopo deste trabalho esta centrado no segundo desses formalismos. A k -estatstica constitui não só uma generalização da estatística de BG, mas, atraves da fundamentação do Princípio de Interação Cinético (KIP), engloba em seu âmago as celebradas estatísticas quânticas de Fermi- Dirac e Bose-Einstein; além da própria q-estatística. Neste trabalho, apresentamos alguns aspectos conceituais da q-estatística e, principalmente, da k-estatística. Utilizaremos esses conceitos junto com o conceito de informação de bloco para apresentar um funcional entrópico espelhado no formalismo de Kaniadakis que será utilizado posteriormente para descrever aspectos informacionais contidos em fractais tipo Cantor. Em particular, estamos interessados em conhecer as relações entre parâmetros fractais, como a dimensão fractal, e o parâmetro deformador. Apesar da simplicidade, isso nos proporcionará, em trabalho futuros, descrever estatisticamente estruturas mais complexas como o DNA, super-redes e sistema complexos
Resumo:
Complex systems have stimulated much interest in the scientific community in the last twenty years. Examples this area are the Domany-Kinzel cellular automaton and Contact Process that are studied in the first chapter this tesis. We determine the critical behavior of these systems using the spontaneous-search method and short-time dynamics (STD). Ours results confirm that the DKCA e CP belong to universality class of Directed Percolation. In the second chapter, we study the particle difusion in two models of stochastic sandpiles. We characterize the difusion through diffusion constant D, definite through in the relation h(x)2i = 2Dt. The results of our simulations, using finite size scalling and STD, show that the diffusion constant can be used to study critical properties. Both models belong to universality class of Conserved Directed Percolation. We also study that the mean-square particle displacement in time, and characterize its dependence on the initial configuration and particle density. In the third chapter, we introduce a computacional model, called Geographic Percolation, to study watersheds, fractals with aplications in various areas of science. In this model, sites of a network are assigned values between 0 and 1 following a given probability distribution, we order this values, keeping always its localization, and search pk site that percolate network. Once we find this site, we remove it from the network, and search for the next that has the network to percole newly. We repeat these steps until the complete occupation of the network. We study the model in 2 and 3 dimension, and compare the bidimensional case with networks form at start real data (Alps e Himalayas)
Resumo:
INTRODUÇÃO: O termo fractal é derivado do latim fractus, que significa irregular ou quebrado, considerando a estrutura observada como tendo uma dimensão não-inteira. Há muitos estudos que empregaram a Dimensão Fractal (DF) como uma ferramenta de diagnóstico. Um dos métodos mais comuns para o seu estudo é a Box-plot counting (Método de contagem de caixas). OBJETIVO: O objetivo do estudo foi tentar estabelecer a contribuição da DF na quantificação da rejeição celular miocárdica após o transplante cardíaco. MÉTODOS: Imagens microscópicas digitalizadas foram capturadas na resolução 800x600 (aumento de 100x). A DF foi calculada com auxílio do software ImageJ, com adaptações. A classificação dos graus de rejeição foi de acordo com a Sociedade Internacional de Transplante Cardíaco e Pulmonar (ISHLT 2004). O relatório final do grau de rejeição foi confirmado e redefinido após exaustiva revisão das lâminas por um patologista experiente externo. No total, 658 lâminas foram avaliadas, com a seguinte distribuição entre os graus de rejeição (R): 335 (0R), 214 (1R), 70 (2R), 39 (3R). Os dados foram analisados estatisticamente com os testes Kruskal-Wallis e curvas ROC sendo considerados significantes valores de P < 0,05. RESULTADOS: Houve diferença estatística significativa entre os diferentes graus de rejeição com exceção da 3R versus 2R. A mesma tendência foi observada na aplicação da curva ROC. CONCLUSÃO: ADF pode contribuir para a avaliação da rejeição celular do miocárdio. Os valores mais elevados estiveram diretamente associados com graus progressivamente maiores de rejeição. Isso pode ajudar na tomada de decisão em casos duvidosos e naqueles que possam necessitar de intensificação da medicação imunossupressora.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Fonoaudiologia - FFC
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Rochas contendo metálicos disseminados ou partículas de argila em ambiente natural onde soluções eletrolíticas normalmente preenchem os poros das rochas, exibem um tipo de polarização em baixas freqüências conhecido como polarização induzida. Nesta tese foi desenvolvido um novo modelo para descrever o fenômeno de polarização das rochas, não apenas em baixas freqüências, mas compreendendo todo o espectro eletromagnético, possível de utilização na prospecção geoelétrica. Este novo modelo engloba a maioria dos modelos utilizados até o momento como casos especiais, além de superar as limitações dos mesmos. Seu circuito analógico inclui uma impedância não linear do tipo r (iwtf)-n que simula o efeito das superfícies rugosas das interfaces entre os grãos bloqueadores (partículas metálicas e/ou de argilas) e o eletrólito. A impedância de Warburg generalizada está em série com a resistência dos grãos bloqueadores da passagem de corrente e em paralelo com a impedância da dupla camada associada a essas interfaces. Esta combinação está em série com a resistência do eletrólito nas passagens dos poros bloqueados. Os canais não bloqueados são representados por uma resistência que corresponde à resistividade normal CC da rocha. A combinação desta resistência com a capacitância "global" da rocha é finalmente conectada em paralelo ao resto do circuito mencionado acima. Os parâmetros deste modelo incluem a resistividade CC (p0), a cargueabilidade (m), três tempos de relaxação (t, Tf and T2), um fator de resistividade de grãos (δr), e o expoente de freqüência (η). O tempo de relaxação fractal (Tf), e o expoente de frequencia (η) estão relacionados à geometria fractal das interfaces rugosas entre os minerais condutivos (grãos metálicos e/ou partículas de argila bloqueando os canais dos poros) e o eletrólito. O tempo de relaxação (T) é um resultado da relaxação em baixa freqüência das duplas camadas elétricas formadas nas interfaces eletrólito-cristais, enquanto (T0) é o tempo de relaxação macroscópico da amostra como um todo. O fator de resistividade dos grãos (δr) relaciona a resistividade dos grãos condutivos com o valor de resistividade CC da rocha. A resistividade CC da rocha (p0), e δr estão relacionados à porosidade, à condutividade do eletrólito e às relações mineralógicas entre a matriz e os grãos condutivos. O modelo foi testado sobre um intervalo largo de freqüências contra dados experimentais de amplitude e fase da resistividade bem como para dados de constante dielétrica complexa. Os dados utilizados neste trabalho foram obtidos a partir da digitalização de dados experimentais publicados, obtidos por diversos autores e englobando amostras de rochas sedimentares, ígneas e metam6rficas. É mostrado neste trabalho que os parâmetros deste modelo permitem identificar diferenças texturais e mineralógicas nas rochas. Bote modelo foi introduzido, primeiramente, como propriedade intrínseca de um semiespaço homogêneo sendo demonstrado, neste trabalho, que a resposta observada em superfície reflete as propriedades intrínsecas do meio polarizável, sendo o acoplamento eletromagnético desprezível em freqüências menores que 104 Hz. Em seguida, o meio polarizável foi embebido em um pacote de N camadas sendo demonstrado que os parâmetros fractais do meio polarizável podem ser obtidos do levantamento em superfície para diferentes espessuras dessa camada. Isto justifica a utilização pura e simples de modelos de polarização desenvolvidos para amostras em laboratório para ajustar dados de campo, o que vem sendo feito sem uma justificativa bem fundamentada. Estes resultados demonstram a importância para a prospecção geolétrica do modelo proposto nesta tese.