996 resultados para Extended states


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of the collective antisymmetric state in entanglement creation by spontaneous emission in a system of two non-overlapping two-level atoms has been investigated. Populations of the collective atomic states and the Wootters entanglement measure (concurrence) for two sets of initial atomic conditions are calculated and illustrated graphically. Calculations include the dipole-dipole interaction and a spatial separation between the atoms that the antisymmetric state of the system is included throughout even for small interatomic separations. It is shown that spontaneous emission can lead to a transient entanglement between the atoms even if the atoms were prepared initially in an unentangled state. It is found that the ability of spontaneous emission to create transient entanglement relies on the absence of population in the collective symmetric state of the system. For the initial state of only one atom excited, entanglement builds up rapidly in time and reaches a maximum for parameter values corresponding roughly to zero population in the symmetric state. On the other hand, for the initial condition of both atoms excited, the atoms remain unentangled until the symmetric state is depopulated. A simple physical interpretation of these results is given in terms of the diagonal states of the density matrix of the system. We also study entanglement creation in a system of two non-identical atoms of different transition frequencies. It is found that the entanglement between the atoms can be enhanced compared to that for identical atoms, and can decay with two different time scales resulting from the coherent transfer of the population from the symmetric to the antisymmetric state. In addition, it was found that a decaying initial entanglement between the atoms can display a revival behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explore the calculation of unimolecular bound states and resonances for deep-well species at large angular momentum using a Chebychev filter diagonalization scheme incorporating doubling of the autocorrelation function as presented recently by Neumaier and Mandelshtam [Phys. Rev. Lett. 86, 5031 (2001)]. The method has been employed to compute the challenging J=20 bound and resonance states for the HO2 system. The methodology has firstly been tested for J=2 in comparison with previous calculations, and then extended to J=20 using a parallel computing strategy. The quantum J-specific unimolecular dissociation rates for HO2-> H+O-2 in the energy range from 2.114 to 2.596 eV have been reported for the first time, and comparisons with the results of Troe and co-workers [J. Chem. Phys. 113, 11019 (2000) Phys. Chem. Chem. Phys. 2, 631 (2000)] from statistical adiabatic channel method/classical trajectory calculations have been made. For most of the energies, the reported statistical adiabatic channel method/classical trajectory rate constants agree well with the average of the fluctuating quantum-mechanical rates. Near the dissociation threshold, quantum rates fluctuate more severely, but their average is still in agreement with the statistical adiabatic channel method/classical trajectory results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I conducted this study to provide insights toward deepening understanding of association between culture and writing by building, assessing, and refining a conceptual model of second language writing. To do this, I examined culture and coherence as well as the relationship between them through a mixed methods research design. Coherence has been an important and complex concept in ESL/EFL writing. I intended to study the concept of coherence in the research context of contrastive rhetoric, comparing the coherence quality in argumentative essays written by undergraduates in Mainland China and their U.S. peers. In order to analyze the complex concept of coherence, I synthesized five linguistic theories of coherence: Halliday and Hasan's cohesion theory, Carroll's theory of coherence, Enkvist's theory of coherence, Topical Structure Analysis, and Toulmin's Model. Based upon the synthesis, 16 variables were generated. Across these 16 variables, Hotelling t-test statistical analysis was conducted to predict differences in argumentative coherence between essays written by two groups of participants. In order to complement the statistical analysis, I conducted 30 interviews of the writers in the studies. Participants' responses were analyzed with open and axial coding. By analyzing the empirical data, I refined the conceptual model by adding more categories and establishing associations among them. The study found that U.S. students made use of more pronominal reference. Chinese students adopted more lexical devices of reiteration and extended paralleling progression. The interview data implied that the difference may be associated with the difference in linguistic features and rhetorical conventions in Chinese and English. As far as Toulmin's Model is concerned, Chinese students scored higher on data than their U.S. peers. According to the interview data, this may be due to the fact that Toulmin's Model, modified as three elements of arguments, have been widely and long taught in Chinese writing instruction while U.S. interview participants said that they were not taught to write essays according to Toulmin's Model. Implications were generated from the process of textual data analysis and the formulation of structural model defining coherence. These implications were aimed at informing writing instruction, assessment, peer-review, and self-revision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Technological advances during the past 30 years have dramatically improved survival rates for children with life-threatening conditions (preterm births, congenital anomalies, disease, or injury) resulting in children with special health care needs (CSHCN), children who have or are at increased risk for a chronic physical, developmental, behavioral, or emotional condition and who require health and related services beyond that required by children generally. There are approximately 10.2 million of these children in the United States or one in five households with a child with special health care needs. Care for these children is limited to home care, medical day care (Prescribed Pediatric Extended Care; P-PEC) or a long term care (LTC) facility. There is very limited research examining health outcomes of CSHCN and their families. The purpose of this research was to compare the effects of home care settings, P-PEC settings, and LTC settings on child health and functioning, family health and function, and health care service use of families with CSHCN. Eighty four CSHCN ages 2 to 21 years having a medically fragile or complex medical condition that required continual monitoring were enrolled with their parents/guardians. Interviews were conducted monthly for five months using the PedsQL™ Generic Core Module for child health and functioning, PedsQL™ Family Impact Module for family health and functioning, and Access to Care from the NS-CSHCN survey for health care services. Descriptive statistics, chi square, and ANCOVA were conducted to determine differences across care settings. Children in the P-PEC settings had a highest health care quality of life (HRQL) overall including physical and psychosocial functioning. Parents/guardians with CSHCN in LTC had the highest HRQL including having time and energy for a social life and employment. Parents/guardians with CSHCN in home care settings had the poorest HRQL including physical and psychosocial functioning with cognitive difficulties, difficulties with worry, communication, and daily activities. They had the fewest hours of employment and the most hours providing direct care for their children. Overall health care service use was the same across the care settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We argue that considering transitions at the same level as states, as first-class citizens, is advantageous in many cases. Namely, the use of atomic propositions on transitions, as well as on states, allows temporal formulas and strategies to be more powerful, general, and meaningful. We define egalitarian structures and logics, and show how they generalize well-known state-based, event-based, and mixed ones. We present translations from egalitarian to non-egalitarian settings that, in particular, allow the model checking of LTLR formulas using Maude’s LTL model checker. We have implemented these translations as a prototype in Maude itself.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An abstract of a thesis devoted to using helix-coil models to study unfolded states.\\

Research on polypeptide unfolded states has received much more attention in the last decade or so than it has in the past. Unfolded states are thought to be implicated in various

misfolding diseases and likely play crucial roles in protein folding equilibria and folding rates. Structural characterization of unfolded states has proven to be

much more difficult than the now well established practice of determining the structures of folded proteins. This is largely because many core assumptions underlying

folded structure determination methods are invalid for unfolded states. This has led to a dearth of knowledge concerning the nature of unfolded state conformational

distributions. While many aspects of unfolded state structure are not well known, there does exist a significant body of work stretching back half a century that

has been focused on structural characterization of marginally stable polypeptide systems. This body of work represents an extensive collection of experimental

data and biophysical models associated with describing helix-coil equilibria in polypeptide systems. Much of the work on unfolded states in the last decade has not been devoted

specifically to the improvement of our understanding of helix-coil equilibria, which arguably is the most well characterized of the various conformational equilibria

that likely contribute to unfolded state conformational distributions. This thesis seeks to provide a deeper investigation of helix-coil equilibria using modern

statistical data analysis and biophysical modeling techniques. The studies contained within seek to provide deeper insights and new perspectives on what we presumably

know very well about protein unfolded states. \\

Chapter 1 gives an overview of recent and historical work on studying protein unfolded states. The study of helix-coil equilibria is placed in the context

of the general field of unfolded state research and the basics of helix-coil models are introduced.\\

Chapter 2 introduces the newest incarnation of a sophisticated helix-coil model. State of the art modern statistical techniques are employed to estimate the energies

of various physical interactions that serve to influence helix-coil equilibria. A new Bayesian model selection approach is utilized to test many long-standing

hypotheses concerning the physical nature of the helix-coil transition. Some assumptions made in previous models are shown to be invalid and the new model

exhibits greatly improved predictive performance relative to its predecessor. \\

Chapter 3 introduces a new statistical model that can be used to interpret amide exchange measurements. As amide exchange can serve as a probe for residue-specific

properties of helix-coil ensembles, the new model provides a novel and robust method to use these types of measurements to characterize helix-coil ensembles experimentally

and test the position-specific predictions of helix-coil models. The statistical model is shown to perform exceedingly better than the most commonly used

method for interpreting amide exchange data. The estimates of the model obtained from amide exchange measurements on an example helical peptide

also show a remarkable consistency with the predictions of the helix-coil model. \\

Chapter 4 involves a study of helix-coil ensembles through the enumeration of helix-coil configurations. Aside from providing new insights into helix-coil ensembles,

this chapter also introduces a new method by which helix-coil models can be extended to calculate new types of observables. Future work on this approach could potentially

allow helix-coil models to move into use domains that were previously inaccessible and reserved for other types of unfolded state models that were introduced in chapter 1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the mode-locked response of excitable systems to periodic forcing has important applications in neuroscience. For example it is known that spatially extended place cells in the hippocampus are driven by the theta rhythm to generate a code conveying information about spatial location. Thus it is important to explore the role of neuronal dendrites in generating the response to periodic current injection. In this paper we pursue this using a compartmental model, with linear dynamics for each compartment, coupled to an active soma model that generates action potentials. By working with the piece-wise linear McKean model for the soma we show how the response of the whole neuron model (soma and dendrites) can be written in closed form. We exploit this to construct a stroboscopic map describing the response of the spatially extended model to periodic forcing. A linear stability analysis of this map, together with a careful treatment of the non-differentiability of the soma model, allows us to construct the Arnol'd tongue structure for 1:q states (one action potential for q cycles of forcing). Importantly we show how the presence of quasi-active membrane in the dendrites can influence the shape of tongues. Direct numerical simulations confirm our theory and further indicate that resonant dendritic membrane can enlarge the windows in parameter space for chaotic behavior. These simulations also show that the spatially extended neuron model responds differently to global as opposed to point forcing. In the former case spatio-temporal patterns of activity within an Arnol'd tongue are standing waves, whilst in the latter they are traveling waves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Technological advances during the past 30 years have dramatically improved survival rates for children with life-threatening conditions (preterm births, congenital anomalies, disease, or injury) resulting in children with special health care needs (CSHCN), children who have or are at increased risk for a chronic physical, developmental, behavioral, or emotional condition and who require health and related services beyond that required by children generally. There are approximately 10.2 million of these children in the United States or one in five households with a child with special health care needs. Care for these children is limited to home care, medical day care (Prescribed Pediatric Extended Care; P-PEC) or a long term care (LTC) facility. There is very limited research examining health outcomes of CSHCN and their families. The purpose of this research was to compare the effects of home care settings, P-PEC settings, and LTC settings on child health and functioning, family health and function, and health care service use of families with CSHCN. Eighty four CSHCN ages 2 to 21 years having a medically fragile or complex medical condition that required continual monitoring were enrolled with their parents/guardians. Interviews were conducted monthly for five months using the PedsQL TM Generic Core Module for child health and functioning, PedsQL TM Family Impact Module for family health and functioning, and Access to Care from the NS-CSHCN survey for health care services. Descriptive statistics, chi square, and ANCOVA were conducted to determine differences across care settings. Children in the P-PEC settings had a highest health care quality of life (HRQL) overall including physical and psychosocial functioning. Parents/guardians with CSHCN in LTC had the highest HRQL including having time and energy for a social life and employment. Parents/guardians with CSHCN in home care settings had the poorest HRQL including physical and psychosocial functioning with cognitive difficulties, difficulties with worry, communication, and daily activities. They had the fewest hours of employment and the most hours providing direct care for their children. Overall health care service use was the same across the care settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The simulation of ultrafast photoinduced processes is a fundamental step towards the understanding of the underlying molecular mechanism and interpretation/prediction of experimental data. Performing a computer simulation of a complex photoinduced process is only possible introducing some approximations but, in order to obtain reliable results, the need to reduce the complexity must balance with the accuracy of the model, which should include all the relevant degrees of freedom and a quantitatively correct description of the electronic states involved in the process. This work presents new computational protocols and strategies for the parameterisation of accurate models for photochemical/photophysical processes based on state-of-the-art multiconfigurational wavefunction-based methods. The required ingredients for a dynamics simulation include potential energy surfaces (PESs) as well as electronic state couplings, which must be mapped across the wide range of geometries visited during the wavepacket/trajectory propagation. The developed procedures allow to obtain solid and extended databases reducing as much as possible the computational cost, thanks to, e.g., specific tuning of the level of theory for different PES regions and/or direct calculation of only the needed components of vectorial quantities (like gradients or nonadiabatic couplings). The presented approaches were applied to three case studies (azobenzene, pyrene, visual rhodopsin), all requiring an accurate parameterisation but for different reasons. The resulting models and simulations allowed to elucidate the mechanism and time scale of the internal conversion, reproducing or even predicting new transient experiments. The general applicability of the developed protocols to systems with different peculiarities and the possibility to parameterise different types of dynamics on an equal footing (classical vs purely quantum) prove that the developed procedures are flexible enough to be tailored for each specific system, and pave the way for exact quantum dynamics with multiple degrees of freedom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the shape resonance spectra of phenol-water clusters, as obtained from elastic electron scattering calculations. Our results, along with virtual orbital analysis, indicate that the well-known indirect mechanism for hydrogen elimination in the gas phase is significantly impacted on by microsolvation, due to the competition between vibronic couplings on the solute and solvent molecules. This fact suggests how relevant the solvation effects could be for the electron-driven damage of biomolecules and the biomass delignification [E. M. de Oliveira et al., Phys. Rev. A 86, 020701(R) (2012)]. We also discuss microsolvation signatures in the differential cross sections that could help to identify the solvated complexes and access the composition of gaseous admixtures of these species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to characterize the effects of partial inhibition of respiratory complex I by rotenone on H2O2 production by isolated rat brain mitochondria in different respiratory states. Flow cytometric analysis of membrane potential in isolated mitochondria indicated that rotenone leads to uniform respiratory inhibition when added to a suspension of mitochondria. When mitochondria were incubated in the presence of a low concentration of rotenone (10 nm) and NADH-linked substrates, oxygen consumption was reduced from 45.9 ± 1.0 to 26.4 ± 2.6 nmol O2 mg(-1) min(-1) and from 7.8 ± 0.3 to 6.3 ± 0.3 nmol O2 mg(-1) min(-1) in respiratory states 3 (ADP-stimulated respiration) and 4 (resting respiration), respectively. Under these conditions, mitochondrial H2O2 production was stimulated from 12.2 ± 1.1 to 21.0 ± 1.2 pmol H2O2 mg(-1) min(-1) and 56.5 ± 4.7 to 95.0 ± 11.1 pmol H2O2 mg(-1) min(-1) in respiratory states 3 and 4, respectively. Similar results were observed when comparing mitochondrial preparations enriched with synaptic or nonsynaptic mitochondria or when 1-methyl-4-phenylpyridinium ion (MPP(+)) was used as a respiratory complex I inhibitor. Rotenone-stimulated H2O2 production in respiratory states 3 and 4 was associated with a high reduction state of endogenous nicotinamide nucleotides. In succinate-supported mitochondrial respiration, where most of the mitochondrial H2O2 production relies on electron backflow from complex II to complex I, low rotenone concentrations inhibited H2O2 production. Rotenone had no effect on mitochondrial elimination of micromolar concentrations of H2O2. The present results support the conclusion that partial complex I inhibition may result in mitochondrial energy crisis and oxidative stress, the former being predominant under oxidative phosphorylation and the latter under resting respiration conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identidade é composta pelos valores, crenças e metas com que um indivíduo está comprometido. Existem quatro estados de identidade: difusão, pré-fechamento, moratória e identidade estabelecida, identificados de acordo com a presença de exploração das alternativas e com a intensidade dos compromissos. Este trabalho verificou os estados de identidade em que se encontravam 753 adolescentes de 15 a 18 anos, estudantes do Ensino Médio de escolas públicas de São Paulo que responderam ao EOMEIS 2, uma escala tipo Likert que avalia os estados de identidade. A maioria dos adolescentes encontrava-se em moratória. Verificou-se uma associação positiva entre o sexo feminino e os estados de moratória e identidade estabelecida; entre a primeira série do Ensino Médio e o estado de pré-fechamento.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The [Ru3O(Ac)6(py)2(CH3OH)]+ cluster provides an effective electrocatalytic species for the oxidation of methanol under mild conditions. This complex exhibits characteristic electrochemical waves at -1.02, 0.15 and 1.18 V, associated with the Ru3III,II,II/Ru3III,III,II/Ru 3III,III,III /Ru3IV,III,III successive redox couples, respectively. Above 1.7 V, formation of two RuIV centers enhances the 2-electron oxidation of the methanol ligand yielding formaldehyde, in agreement with the theoretical evolution of the HOMO levels as a function of the oxidation states. This work illustrates an important strategy to improve the efficiency of the oxidation catalysis, by using a multicentered redox catalyst and accessing its multiple higher oxidation states.