959 resultados para Estimation process
Resumo:
We present a statistical methodology for leakage power estimation, due to subthreshold and gate tunneling leakage, in the presence of process variations, for 65 nm CMOS. The circuit leakage power variations is analyzed by Monte Carlo (MC) simulations, by characterizing NAND gate library. A statistical “hybrid model” is proposed, to extend this methodology to a generic library. We demonstrate that hybrid model based statistical design results in up to 95% improvement in the prediction of worst to best corner leakage spread, with an error of less than 0.5%, with respect to worst case design.
Resumo:
A numerical method to estimate temperature distribution during the cure of epoxy-terminated poly(phenylene ether ketone) (E-PEK)-based composite is suggested. The effect of the temperature distribution on the selection of cure cycle is evaluated using a suggested alternation criterion. The effect of varying heating rate and thickness on the temperature distribution, viscosity distribution and distribution of the extent of cure reaction are discussed based on the combination of the here-established temperature distribution model and the previously established curing kinetics model and chemorheological model. It is found that, for a thin composite (<=10mm) and low heating rate (<=2.5K/min), the effect of temperature distribution on cure cycle and on the processing window for pressure application can be neglected. Low heating rate is of benefit to reduce the temperature gradient. The processing window for pressure application becomes narrower with increasing thicknesses of composite sheets. The validity of the temperature distribution model and the modified processing window is evaluated through the characterization of mechanical and physical properties of E-PEK-based composite fabricated according to different temperature distribution conditions.
An empirical study of process-related attributes in segmented software cost-estimation relationships
Resumo:
Parametric software effort estimation models consisting on a single mathematical relationship suffer from poor adjustment and predictive characteristics in cases in which the historical database considered contains data coming from projects of a heterogeneous nature. The segmentation of the input domain according to clusters obtained from the database of historical projects serves as a tool for more realistic models that use several local estimation relationships. Nonetheless, it may be hypothesized that using clustering algorithms without previous consideration of the influence of well-known project attributes misses the opportunity to obtain more realistic segments. In this paper, we describe the results of an empirical study using the ISBSG-8 database and the EM clustering algorithm that studies the influence of the consideration of two process-related attributes as drivers of the clustering process: the use of engineering methodologies and the use of CASE tools. The results provide evidence that such consideration conditions significantly the final model obtained, even though the resulting predictive quality is of a similar magnitude.
Resumo:
A new class of parameter estimation algorithms is introduced for Gaussian process regression (GPR) models. It is shown that the integration of the GPR model with probability distance measures of (i) the integrated square error and (ii) Kullback–Leibler (K–L) divergence are analytically tractable. An efficient coordinate descent algorithm is proposed to iteratively estimate the kernel width using golden section search which includes a fast gradient descent algorithm as an inner loop to estimate the noise variance. Numerical examples are included to demonstrate the effectiveness of the new identification approaches.
Resumo:
The estimation of a concentration-dependent diffusion coefficient in a drying process is known as an inverse coefficient problem. The solution is sought wherein the space-average concentration is known as function of time (mass loss monitoring). The problem is stated as the minimization of a functional and gradient-based algorithms are used to solve it. Many numerical and experimental examples that demonstrate the effectiveness of the proposed approach are presented. Thin slab drying was carried out in an isothermal drying chamber built in our laboratory. The diffusion coefficients of fructose obtained with the present method are compared with existing literature results.
Resumo:
2000 Mathematics Subject Classification: 60J80, 62F12, 62P10
Resumo:
2000 Mathematics Subject Classification: Primary 60G55; secondary 60G25.
Resumo:
This paper proposes a new method of using foreground silhouette images for human pose estimation. Labels are introduced to the silhouette images, providing an extra layer of information that can be used in the model fitting process. The pixels in the silhouettes are labelled according to the corresponding body part in the model of the current fit, with the labels propagated into the silhouette of the next frame to be used in the fitting for the next frame. Both single and multi-view implementations are detailed, with results showing performance improvements over only using standard unlabelled silhouettes.
Resumo:
The aim of this paper is to explore a new approach to obtain better traffic demand (Origin-Destination, OD matrices) for dense urban networks. From reviewing existing methods, from static to dynamic OD matrix evaluation, possible deficiencies in the approach could be identified: traffic assignment details for complex urban network and lacks in dynamic approach. To improve the global process of traffic demand estimation, this paper is focussing on a new methodology to determine dynamic OD matrices for urban areas characterized by complex route choice situation and high level of traffic controls. An iterative bi-level approach will be used, the Lower level (traffic assignment) problem will determine, dynamically, the utilisation of the network by vehicles using heuristic data from mesoscopic traffic simulator and the Upper level (matrix adjustment) problem will proceed to an OD estimation using optimization Kalman filtering technique. In this way, a full dynamic and continuous estimation of the final OD matrix could be obtained. First results of the proposed approach and remarks are presented.
Resumo:
We estimate the parameters of a stochastic process model for a macroparasite population within a host using approximate Bayesian computation (ABC). The immunity of the host is an unobserved model variable and only mature macroparasites at sacrifice of the host are counted. With very limited data, process rates are inferred reasonably precisely. Modeling involves a three variable Markov process for which the observed data likelihood is computationally intractable. ABC methods are particularly useful when the likelihood is analytically or computationally intractable. The ABC algorithm we present is based on sequential Monte Carlo, is adaptive in nature, and overcomes some drawbacks of previous approaches to ABC. The algorithm is validated on a test example involving simulated data from an autologistic model before being used to infer parameters of the Markov process model for experimental data. The fitted model explains the observed extra-binomial variation in terms of a zero-one immunity variable, which has a short-lived presence in the host.