938 resultados para Eriksson Katie
Resumo:
Rationale: Experimental autoimmune myocarditis (EAM) mirrors important pathogenic aspects of inflammatory cardiomyopathy, a common cause of heart failure. In EAM, TGF-β-dependent conversion of heart-infiltrating prominin-1+ progenitors into myofibroblasts is critical for development of fibrosis and the end-stage heart failure phenotype. Therapeutic strategies modulating the in vivo fate of prominin-1+ progenitors might therefore prevent TGF-β-mediated cardiac fibrosis and pathological remodelling. Methods and Results: EAM was induced in BALB/c mice using alpha-myosin heavy chain (aMyHC) peptide/complete Freund's adjuvant (CFA) immunization. Prominin-1+ cells were isolated from the inflamed hearts at day 21 after immunization, expanded and treated with Macrophage Colony-Stimulating Factor (M-CSF) or Transforming Growth Factor-beta (TGF-β). Herein, we demonstrated that M-CSF turns, ex vivo and in the EAM, heart-infiltrating prominin-1+ progenitors into immunosuppressive F4/80/CD11b/CD16/32/NOS2-expressing, nitric oxide producing and E.coli bacteria phygocyting macrophages, and protect further TGF-β-stimulated differentiation into pathogenic myofibroblasts. Systemic M-CSF treatment during myocarditis completely prevented post-inflammatory fibrosis, T cell relapse and left ventricular dysfunction. Mechanistically, M-CSF-induced macrophage differentiation from prominin-1+ progenitors critically required nitric oxide synthase 2. Accordingly, M-CSF treatment failed to reduce myocardial fibrosis development in Nos2-/- mice. Conclusions: Altering the in vivo fate of inflammatory prominin-1 expressing progenitors from pro-fibrotic into the F4/80 expressing macrophage phenotype protects from myocarditis progression, cardiac fibrosis, and heart failure. These findings offer a modern therapeutic model and challenge former concepts, which attributed macrophages a detrimental role in inflammatory cardiomyopathy progression.
Resumo:
Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10(-8)-1.2×10(-43)). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3×10(-4)). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3×10(-3), n = 22,044), increased triglycerides (p = 2.6×10(-14), n = 93,440), increased waist-to-hip ratio (p = 1.8×10(-5), n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4×10(-3), n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5×10(-13), n = 96,748) and decreased BMI (p = 1.4×10(-4), n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.
Resumo:
The male-to-female sex ratio at birth is constant across world populations with an average of 1.06 (106 male to 100 female live births) for populations of European descent. The sex ratio is considered to be affected by numerous biological and environmental factors and to have a heritable component. The aim of this study was to investigate the presence of common allele modest effects at autosomal and chromosome X variants that could explain the observed sex ratio at birth. We conducted a large-scale genome-wide association scan (GWAS) meta-analysis across 51 studies, comprising overall 114 863 individuals (61 094 women and 53 769 men) of European ancestry and 2 623 828 common (minor allele frequency >0.05) single-nucleotide polymorphisms (SNPs). Allele frequencies were compared between men and women for directly-typed and imputed variants within each study. Forward-time simulations for unlinked, neutral, autosomal, common loci were performed under the demographic model for European populations with a fixed sex ratio and a random mating scheme to assess the probability of detecting significant allele frequency differences. We do not detect any genome-wide significant (P < 5 × 10(-8)) common SNP differences between men and women in this well-powered meta-analysis. The simulated data provided results entirely consistent with these findings. This large-scale investigation across ~115 000 individuals shows no detectable contribution from common genetic variants to the observed skew in the sex ratio. The absence of sex-specific differences is useful in guiding genetic association study design, for example when using mixed controls for sex-biased traits.
Resumo:
BACKGROUND: Activation of innate pattern-recognition receptors promotes CD4+ T-cell-mediated autoimmune myocarditis and subsequent inflammatory cardiomyopathy. Mechanisms that counterregulate exaggerated heart-specific autoimmunity are poorly understood. METHODS AND RESULTS: Experimental autoimmune myocarditis was induced in BALB/c mice by immunization with α-myosin heavy chain peptide and complete Freund's adjuvant. Together with interferon-γ, heat-killed Mycobacterium tuberculosis, an essential component of complete Freund's adjuvant, converted CD11b(hi)CD11c(-) monocytes into tumor necrosis factor-α- and nitric oxide synthase 2-producing dendritic cells (TipDCs). Heat-killed M. tuberculosis stimulated production of nitric oxide synthase 2 via Toll-like receptor 2-mediated nuclear factor-κB activation. TipDCs limited antigen-specific T-cell expansion through nitric oxide synthase 2-dependent nitric oxide production. Moreover, they promoted nitric oxide synthase 2 production in hematopoietic and stromal cells in a paracrine manner. Consequently, nitric oxide synthase 2 production by both radiosensitive hematopoietic and radioresistant stromal cells prevented exacerbation of autoimmune myocarditis in vivo. CONCLUSIONS: Innate Toll-like receptor 2 stimulation promotes formation of regulatory TipDCs, which confine autoreactive T-cell responses in experimental autoimmune myocarditis via nitric oxide. Therefore, activation of innate pattern-recognition receptors is critical not only for disease induction but also for counterregulatory mechanisms, protecting the heart from exaggerated autoimmunity.
Resumo:
Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ∼2,000, ∼3,700 and ∼9,500 SNPs explained ∼21%, ∼24% and ∼29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/β-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
Resumo:
Streblidae flies are specialised parasites of bat hosts, mainly phyllostomids. There is a high richness of streblids in the savannah-like Cerrado region; however, there is little quantitative data available in parasitological indices. Here, we describe the component community, prevalence and intensity of a streblid infestation on a phyllostomid bat assemblage in Serra da Bodoquena, a Cerrado region in Southwest Brazil. We conducted surveys by capturing and inspecting bat hosts during the seven-month period between October 2004-December 2005. All the ectoparasites found on the bats were collected in the field and then counted and identified in the laboratory. We captured 327 bats belonging to 13 species, of which eight species were parasitized by 17 species of streblids. Carollia perspicillata and Glossophaga soricina were infested with seven streblid species, whereas the other bat species were infested with four or fewer streblid species. Megistopoda proxima and Aspidoptera falcata flies were found on Sturnira lilium, and Trichobius joblingi was the most prevalent fly on C. perspicillata. Megistopoda aranea and Aspidoptera phyllostomatis were highly prevalent and had a high intensity of infestation on Artibeus planirostris. Overall comparisons of the available data suggest that the component communities of streblids vary more between the Cerrado and Atlantic Forest phytogeographical regions than between localities within the same phytogeographical region.
Resumo:
BACKGROUND Socio-economic inequalities in mortality are observed at the country level in both North America and Europe. The purpose of this work is to investigate the contribution of specific risk factors to social inequalities in cause-specific mortality using a large multi-country cohort of Europeans. METHODS A total of 3,456,689 person/years follow-up of the European Prospective Investigation into Cancer and Nutrition (EPIC) was analysed. Educational level of subjects coming from 9 European countries was recorded as proxy for socio-economic status (SES). Cox proportional hazard model's with a step-wise inclusion of explanatory variables were used to explore the association between SES and mortality; a Relative Index of Inequality (RII) was calculated as measure of relative inequality. RESULTS Total mortality among men with the highest education level is reduced by 43% compared to men with the lowest (HR 0.57, 95% C.I. 0.52-0.61); among women by 29% (HR 0.71, 95% C.I. 0.64-0.78). The risk reduction was attenuated by 7% in men and 3% in women by the introduction of smoking and to a lesser extent (2% in men and 3% in women) by introducing body mass index and additional explanatory variables (alcohol consumption, leisure physical activity, fruit and vegetable intake) (3% in men and 5% in women). Social inequalities were highly statistically significant for all causes of death examined in men. In women, social inequalities were less strong, but statistically significant for all causes of death except for cancer-related mortality and injuries. DISCUSSION In this European study, substantial social inequalities in mortality among European men and women which cannot be fully explained away by accounting for known common risk factors for chronic diseases are reported.
Resumo:
This study aimed to elucidate the observed variable phenotypic expressivity associated with NRXN1 (Neurexin 1) haploinsufficiency by analyses of the largest cohort of patients with NRXN1 exonic deletions described to date and by comprehensively reviewing all comparable copy number variants in all disease cohorts that have been published in the peer reviewed literature (30 separate papers in all). Assessment of the clinical details in 25 previously undescribed individuals with NRXN1 exonic deletions demonstrated recurrent phenotypic features consisting of moderate to severe intellectual disability (91%), severe language delay (81%), autism spectrum disorder (65%), seizures (43%), and hypotonia (38%). These showed considerable overlap with previously reported NRXN1-deletion associated phenotypes in terms of both spectrum and frequency. However, we did not find evidence for an association between deletions involving the β-isoform of neurexin-1 and increased head size, as was recently published in four cases with a deletion involving the C-terminus of NRXN1. We identified additional rare copy number variants in 20% of cases. This study supports a pathogenic role for heterozygous exonic deletions of NRXN1 in neurodevelopmental disorders. The additional rare copy number variants identified may act as possible phenotypic modifiers as suggested in a recent digenic model of neurodevelopmental disorders. © 2013 Wiley Periodicals, Inc.
Resumo:
Androgenetic alopecia (AGA) is a highly heritable condition and the most common form of hair loss in humans. Susceptibility loci have been described on the X chromosome and chromosome 20, but these loci explain a minority of its heritable variance. We conducted a large-scale meta-analysis of seven genome-wide association studies for early-onset AGA in 12,806 individuals of European ancestry. While replicating the two AGA loci on the X chromosome and chromosome 20, six novel susceptibility loci reached genome-wide significance (p = 2.62×10(-9)-1.01×10(-12)). Unexpectedly, we identified a risk allele at 17q21.31 that was recently associated with Parkinson's disease (PD) at a genome-wide significant level. We then tested the association between early-onset AGA and the risk of PD in a cross-sectional analysis of 568 PD cases and 7,664 controls. Early-onset AGA cases had significantly increased odds of subsequent PD (OR = 1.28, 95% confidence interval: 1.06-1.55, p = 8.9×10(-3)). Further, the AGA susceptibility alleles at the 17q21.31 locus are on the H1 haplotype, which is under negative selection in Europeans and has been linked to decreased fertility. Combining the risk alleles of six novel and two established susceptibility loci, we created a genotype risk score and tested its association with AGA in an additional sample. Individuals in the highest risk quartile of a genotype score had an approximately six-fold increased risk of early-onset AGA [odds ratio (OR) = 5.78, p = 1.4×10(-88)]. Our results highlight unexpected associations between early-onset AGA, Parkinson's disease, and decreased fertility, providing important insights into the pathophysiology of these conditions.
Resumo:
We previously used a single nucleotide polymorphism (SNP) in the CHRNA5-A3-B4 gene cluster associated with heaviness of smoking within smokers to confirm the causal effect of smoking in reducing body mass index (BMI) in a Mendelian randomisation analysis. While seeking to extend these findings in a larger sample we found that this SNP is associated with 0.74% lower body mass index (BMI) per minor allele in current smokers (95% CI -0.97 to -0.51, P = 2.00 × 10(-10)), but also unexpectedly found that it was associated with 0.35% higher BMI in never smokers (95% CI +0.18 to +0.52, P = 6.38 × 10(-5)). An interaction test confirmed that these estimates differed from each other (P = 4.95 × 10(-13)). This difference in effects suggests the variant influences BMI both via pathways unrelated to smoking, and via the weight-reducing effects of smoking. It would therefore be essentially undetectable in an unstratified genome-wide association study of BMI, given the opposite association with BMI in never and current smokers. This demonstrates that novel associations may be obscured by hidden population sub-structure. Stratification on well-characterized environmental factors known to impact on health outcomes may therefore reveal novel genetic associations.
Resumo:
The pathogenesis of androgenetic alopecia (AGA, male-pattern baldness) is driven by androgens, and genetic predisposition is the major prerequisite. Candidate gene and genome-wide association studies have reported that single-nucleotide polymorphisms (SNPs) at eight different genomic loci are associated with AGA development. However, a significant fraction of the overall heritable risk still awaits identification. Furthermore, the understanding of the pathophysiology of AGA is incomplete, and each newly associated locus may provide novel insights into contributing biological pathways. The aim of this study was to identify unknown AGA risk loci by replicating SNPs at the 12 genomic loci that showed suggestive association (5 × 10(-8)<P<10(-5)) with AGA in a recent meta-analysis. We analyzed a replication set comprising 2,759 cases and 2,661 controls of European descent to confirm the association with AGA at these loci. Combined analysis of the replication and the meta-analysis data identified four genome-wide significant risk loci for AGA on chromosomes 2q35, 3q25.1, 5q33.3, and 12p12.1. The strongest association signal was obtained for rs7349332 (P=3.55 × 10(-15)) on chr2q35, which is located intronically in WNT10A. Expression studies in human hair follicle tissue suggest that WNT10A has a functional role in AGA etiology. Thus, our study provides genetic evidence supporting an involvement of WNT signaling in AGA development.
Resumo:
BACKGROUND: Early diagnosis of postoperative orthopaedic infections is important in order to rapidly initiate adequate antimicrobial therapy. There are currently no reliable diagnostic markers to differentiate infectious from noninfectious causes of postoperative fever. We investigated the value of the serum procalcitonin level in febrile patients after orthopaedic surgery. METHODS: We prospectively evaluated 103 consecutive patients with new onset of fever within ten days after orthopaedic surgery. Fever episodes were classified by two independent investigators who were blinded to procalcitonin results as infectious or noninfectious origin. White blood-cell count, C-reactive protein level, and procalcitonin level were assessed on days 0, 1, and 3 of the postoperative fever. RESULTS: Infection was diagnosed in forty-five (44%) of 103 patients and involved the respiratory tract (eighteen patients), urinary tract (eighteen), joints (four), surgical site (two), bloodstream (two), and soft tissues (one). Unlike C-reactive protein levels and white blood-cell counts, procalcitonin values were significantly higher in patients with infection compared with patients without infection on the day of fever onset (p = 0.04), day 1 (p = 0.07), and day 3 (p = 0.003). Receiver-operating characteristics demonstrated that procalcitonin had the highest diagnostic accuracy, with a value of 0.62, 0.62, and 0.71 on days 0, 1, and 3, respectively. In a multivariate logistic regression analysis, procalcitonin was a significant predictor for postoperative infection on days 0, 1, and 3 of fever with an odds ratio of 2.3 (95% confidence interval, 1.1 to 4.4), 2.3 (95% confidence interval, 1.1 to 5.2), and 3.3 (95% confidence interval, 1.2 to 9.0), respectively. CONCLUSIONS: Serum procalcitonin is a helpful diagnostic marker supporting clinical and microbiological findings for more reliable differentiation of infectious from noninfectious causes of fever after orthopaedic surgery.
Resumo:
Autism spectrum disorders (ASDs) are a heterogeneous group of disorders with a complex genetic etiology. We used high-resolution whole genome array-based comparative genomic hybridization (array-CGH) to screen 223 ASD patients for gene dose alterations associated with susceptibility for autism. Clinically significant copy number variations (CNVs) were identified in 18 individuals (8%), of which 9 cases (4%) had de novo aberrations. In addition, 20 individuals (9%) were shown to have CNVs of unclear clinical relevance. Among these, 13 cases carried rare but inherited CNVs that may increase the risk for developing ASDs, while parental samples were unavailable in the remaining seven cases. Classification of all patients into different phenotypic and inheritance pattern groups indicated the presence of different CNV patterns in different patient groups. Clinically relevant CNVs were more common in syndromic cases compared to non-syndromic cases. Rare inherited CNVs were present in a higher proportion of ASD cases having first- or second-degree relatives with an ASD-related neuropsychiatric phenotype in comparison with cases without reported heredity (P = 0.0096). We conclude that rare CNVs, encompassing potential candidate regions for ASDs, increase the susceptibility for the development of ASDs and related neuropsychiatric disorders giving us further insight into the complex genetics underlying ASDs.