920 resultados para Equação de Maxwell 2D
Resumo:
This paper presents an algorithm for solid model reconstruction from 2D sectional views based on volume-based approach. None of the existing work in automatic reconstruction from 2D orthographic views have addressed sectional views in detail. It is believed that the volume-based approach is better suited to handle different types of sectional views. The volume-based approach constructs the 3D solid by a boolean combination of elementary solids. The elementary solids are formed by sweep operation on loops identified in the input views. The only adjustment to be made for the presence of sectional views is in the identification of loops that would form the elemental solids. In the algorithm, the conventions of engineering drawing for sectional views, are used to identify the loops correctly. The algorithm is simple and intuitive in nature. Results have been obtained for full sections, offset sections and half sections. Future work will address other types of sectional views such as removed and revolved sections and broken-out sections. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
When a fluid with memory is injected into any flow region some assumptions regarding the initial state of stress have to be made in order to determine the state of stress at any subsequent instant. For a Maxwell fluid, it is assumed that the fluid near the surface of injection is suddenly stressed and responds by starting flow in accordance with the mechanical model chosen. The flow of a Maxwell fluid with a single relaxation time has been determined under the above assumption in the following two cases: (i) annulus between two porous concentric circular cylinders, and (ii) space between two porous and infinitely extending parallel plates. The nature of flow in the present case is similar to that of the Reiner-Rivlin fluids obtained by Narasimhan2).
Resumo:
We consider the secondary flows arising in the motion of a Maxwell fluid between two rotating coaxial cones having the same vertex. We find that in any meridian plane passing through the common axis of the cones, the flow field is divided into two regions. Such a division of flow field was first reported by Bhatnagar and Rathna.
Resumo:
Resistivity imaging of a reconfigurable phantom with circular inhomogeneities is studied with a simple instrumentation and data acquisition system for Electrical Impedance Tomography. The reconfigurable phantom is developed with stainless steel electrodes and a sinusoidal current of constant amplitude is injected to the phantom boundary using opposite current injection protocol. Nylon and polypropylene cylinders with different cross sectional areas are kept inside the phantom and the boundary potential data are collected. The instrumentation and the data acquisition system with a DIP switch-based multiplexer board are used to inject a constant current of desired amplitude and frequency. Voltage data for the first eight current patterns (128 voltage data) are found to be sufficient to reconstruct the inhomogeneities and hence the acquisition time is reduced. Resistivity images are reconstructed from the boundary data for different inhomogeneity positions using EIDORS-2D. The results show that the shape and resistivity of the inhomogeneity as well as the background resistivity are successfully reconstructed from the potential data for single or double inhomogeneity phantoms. The resistivity images obtained from the single and double inhomogeneity phantom clearly indicate the inhomogeneity as the high resistive material. Contrast to noise ratio (CNR) and contrast recovery (CR) of the reconstructed images are found high for the inhomogeneities near all the electrodes arbitrarily chosen for the entire study. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Coordination-driven self-assembly of oxalato-bridged half-sandwich p-cymene ruthenium complex Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)(2)] (O3SCF3)(2) (1a) with several ditopic donors (L-a-L-d) in methanol affords a series of bi- and tetranuclear metallamacrocycles (2a and 3-5). Similarly, the combination of 2,5-dihydroxy-1,4-benzoquinonato (dhbq)-bridged binuclear complex Ru-2(mu-eta(4)-C6H2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1b) with a flexible bidentate amide linker (L-a) in 1:1 molar ratio gave the corresponding tetranuclear complex 2b. All the macrocycles were isolated as their triflate salts in high yields and were fully characterized by various spectroscopic techniques. Finally, the molecular structures of all the assemblies were determined unambiguously by single-crystal X-diffraction analysis. Interestingly, the combination of acceptor 1a or 1b with an unsymmetrical linear ditopic donor L-a results in a self-sorted linkage isomeric (head-to-tail) macrocycle (2a or 2b) despite the possibility of formation of two different isomeric macrocycles (head-to-head or head-to-tail) due to different connectivity of the donor. Molecular structures of the complexes 2a and 2b showed tetranuclear rectangular geometry with dimensions of 5.51 angstrom x 13.29 angstrom for 2a and 7.91 angstrom x 13.46 angstrom for 2b. In both cases, two binuclear Ru-2(II) building blocks are connected by a mu-N-(4-pyridyl)isonicotinamide donor in a head-to-tail fashion. Surprisingly, the macrocycle 2a loses one counteranion and cocrystallizes with monodeprotonated 1,3,5-trihydroxybenzene via strong intermolecular pi-pi stacking and hydrogen bonding. The tweezer complex 3 showed strong fluorescence in solution, and it showed fluorescence sensing toward nitroaromatic compounds. A fluorescence study demonstrated a marked quenching of the initial fluorescence intensity of the macrocycle 3 upon gradual addition of trinitrotoluene and exhibits significant fluorescence quenching response only for nitroaromatic compounds compared to various other aromatic compounds tested.
Resumo:
In this work, a procedure is presented for the reconstruction of biological organs from image sequences obtained through CT-scan. Although commercial software, which can accomplish this task, are readily available, the procedure presented here needs only free software. The procedure has been applied to reconstruct a liver from the scan data available in literature. 3D biological organs obtained this way can be used for the finite element analysis of biological organs and this has been demonstrated by carrying out an FE analysis on the reconstructed liver.
Resumo:
The statistical mechanics of a two-dimensional Coulomb gas confined to one dimension is studied, wherein hard core particles move on a ring. Exact self-duality is shown for a version of the sine-Gordon model arising in this context, thereby locating the transition temperature exactly. We present asymptotically exact results for the correlations in the model and characterize the low- and high-temperature phases. Numerical simulations provide support to these renormalization group calculations. Connections with other interesting problems, such as the quantum Brownian motion of a panicle in a periodic potential and impurity problems, are pointed out.
Resumo:
2D NMR spectroscopy has been used to determine the metal configuration in solution of three complexes, viz. [(eta(6)-p-cymene)Ru(L*)Cl] (1) and [(eta(6)-p-cymene)Ru(L*)(L')] (ClO4) (L' = H2O, 2; PPh3, 3), where L* is the anion of (S)-(1-phenylethyl)salicylaldimine. The complexes exist in two diastereomeric forms in solution. Both the (R-Ru,S-C)- and (S-Ru,S-C)-diastereomers display the presence of attractive, CH/pi interaction involving the phenyl group attached to the chiral carbon and the cymene ring hydrogens. This interaction restricts the rotation of the C*-N single bond and, as a result, two structural types with either the hydrogen atom attached to the chiral carbon (C*) or the methyl group attached to C* in close proximity of the cymene ring protons get stabilized. Using 2D NMR spectroscopy as a tool, the spatial interaction involving these protons are studied in order to obtain the metal configuration(s) of the diastereomeric complexes in solution. This technique has enabled us to determine the metal configuration as (R-Ru,S-C) for the major isomers of 1-3 in solution.
Resumo:
Microwave (MW) thawing of 2D frozen cylinders exposed to uniform plane waves from one face, is modeled using the effective heat capacity formulation with the MW power obtained from the electric field equations. Computations are illustrated for tylose (23% methyl cellulose gel) which melts over a range of temperatures giving rise to a mushy zone. Within the mushy region the dielectric properties are functions of the liquid volume fraction. The resulting coupled, time dependent non-linear equations are solved using the Galerkin finite element method with a fixed mesh. Our method efficiently captures the multiple connected thawed domains that arise due to the penetration of MWs in the sample. For a cylinder of diameter D, the two length scales that control the thawing dynamics are D/D-p and D/lambda(m), where D-p and lambda(m) are the penetration depth and wavelength of radiation in the sample respectively. For D/D-p, D/lambda(m) much less than 1 power absorption is uniform and thawing occurs almost simultaneously across the sample (Regime I). For D/D-p much greater than 1 thawing is seen to occur from the incident face, since the power decays exponentially into the sample (Regime III). At intermediate values, 0.2 < D/D-p, D/lambda(m) < 2.0 (Regime II) thawing occurs from the unexposed face at smaller diameters, from both faces at intermediate diameters and from the exposed and central regions at larger diameters. Average power absorption during thawing indicates a monotonic rise in Regime I and a monotonic decrease in Regime III. Local maxima in the average power observed for samples in Regime II are due to internal resonances within the sample. Thawing time increases monotonically with sample diameter and temperature gradients in the sample generally increase from Regime I to Regime III. (C) 2002 Elsevier Science Ltd. All rights reserved.
Reconstructing Solid Model from 2D Scanned Images of Biological Organs for Finite Element Simulation
Resumo:
This work presents a methodology to reconstruct 3D biological organs from image sequences or other scan data using readily available free softwares with the final goal of using the organs (3D solids) for finite element analysis. The methodology deals with issues such as segmentation, conversion to polygonal surface meshes, and finally conversion of these meshes to 3D solids. The user is able to control the detail or the level of complexity of the solid constructed. The methodology is illustrated using 3D reconstruction of a porcine liver as an example. Finally, the reconstructed liver is imported into the commercial software ANSYS, and together with a cyst inside the liver, a nonlinear analysis performed. The results confirm that the methodology can be used for obtaining 3D geometry of biological organs. The results also demonstrate that the geometry obtained by following this methodology can be used for the nonlinear finite element analysis of organs. The methodology (or the procedure) would be of use in surgery planning and surgery simulation since both of these extensively use finite elements for numerical simulations and it is better if these simulations are carried out on patient specific organ geometries. Instead of following the present methodology, it would cost a lot to buy a commercial software which can reconstruct 3D biological organs from scanned image sequences.
Resumo:
We propose robust and scalable processes for the fabrication of floating gate devices using ordered arrays of 7 nm size gold nanoparticles as charge storage nodes. The proposed strategy can be readily adapted for fabricating next generation (sub-20 nm node) non-volatile memory devices.