975 resultados para Enzyme induction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to compare xenobiotic CYP1A induction in liver, gills, and excretory kidney of gilthead seabream, Sparus aurata. Fishes were exposed via water for 20 days to different concentrations of benzo(a)pyrene (B(a)P) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). CYP1A was measured at the enzyme activity level as 7-ethoxyresorufin-O-deethylase (EROD) activity, and at the protein level by means of ELISA. The liver displayed the highest absolute levels of EROD activity, both under non-exposed and exposed conditions. Organ- or inducer-related differences in the time course of CYP1A induction were moderate; however, the magnitude of the induction response varied between the organs and between B(a)P and TCDD. In the case of TCDD, liver, and kidney yielded a comparable induction response, whereas in the case of B(a)P, the kidney showed a substantially higher maximum induction factor than the liver. In the gills, the two xenobiotics resulted in similar maximum induction factors. In B(a)P-exposed seabream, EROD activities and CYP1A protein levels showed a good correlation in all three organs, whereas with TCDD as inducer the correlation was poor, what was mainly due to a decrease of EROD activities at the higher concentrations of TCDD, while CYP1A protein levels showed no concomitant decline. Overall, the study revealed both similarities and differences in the time-, concentration-, and inducer-dependent CYP1A responses of the three target organs, liver, kidney, and gills. Although, the findings of this study principally confirm the notion of the liver as the major metabolic organ in fish, they also provide evidence for substantial metabolic potential in gills and particularly in the kidney.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we established cell culture conditions for primary equine hepatocytes allowing cytochrome P450 enzyme (CYP) induction experiments. Hepatocytes were isolated after a modified method of Bakala et al. (2003) and cultivated on collagen I coated plates. Three different media were compared for their influence on morphology, viability and CYP activity of the hepatocytes. CYP activity was evaluated with the fluorescent substrate 7-benzyloxy-4-trifluoromethylcoumarin. Induction experiments were carried out with rifampicin, dexamethasone or phenobarbital. Concentration-response curves for induction with rifampicin were created. Williams' medium E showed the best results on morphology and viability of the hepatocytes and was therefore used for the following induction experiments. Cells cultured in Dulbecco's Modified Eagle Medium were not inducible. Incubation with rifampicin increased the CYP activity in two different hepatocyte preparations in a dose dependent manner (EC50=1.20 μM and 6.06 μM; Emax=4.1- and 3.4-fold induction). No increase in CYP activity was detected after incubation with dexamethasone or phenobarbital. The hepatocyte culture conditions established in this study proved to be valuable for investigation of the induction of equine CYPs. In further studies, other equine drugs can be evaluated for CYP induction with this in vitro system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The induction of late long-term potentiation (L-LTP) involves complex interactions among second-messenger cascades. To gain insights into these interactions, a mathematical model was developed for L-LTP induction in the CA1 region of the hippocampus. The differential equation-based model represents actions of protein kinase A (PKA), MAP kinase (MAPK), and CaM kinase II (CAMKII) in the vicinity of the synapse, and activation of transcription by CaM kinase IV (CAMKIV) and MAPK. L-LTP is represented by increases in a synaptic weight. Simulations suggest that steep, supralinear stimulus-response relationships between stimuli (e.g., elevations in [Ca(2+)]) and kinase activation are essential for translating brief stimuli into long-lasting gene activation and synaptic weight increases. Convergence of multiple kinase activities to induce L-LTP helps to generate a threshold whereby the amount of L-LTP varies steeply with the number of brief (tetanic) electrical stimuli. The model simulates tetanic, -burst, pairing-induced, and chemical L-LTP, as well as L-LTP due to synaptic tagging. The model also simulates inhibition of L-LTP by inhibition of MAPK, CAMKII, PKA, or CAMKIV. The model predicts results of experiments to delineate mechanisms underlying L-LTP induction and expression. For example, the cAMP antagonist RpcAMPs, which inhibits L-LTP induction, is predicted to inhibit ERK activation. The model also appears useful to clarify similarities and differences between hippocampal L-LTP and long-term synaptic strengthening in other systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cytochrome P450 monooxygenase system consists of NADPH- cytochrome P450 reductase (P450 reductase) and cytochromes P450, which can catalyze the oxidation of a wide variety of endogenous and exogenous compounds, including steroid hormones, fatty acids, drugs, and pollutants. The functions of this system are as diverse as the substrates. P450 reductase transfers reducing equivalents from NADPH to P450, which in turn catalyzes metabolic reactions. This enzyme system has the highest level of activity in the liver. It is also present in other tissues, including brain. The functions of this enzyme system in brain seem to include: neurotransmission, neuroendocrinology, developmental and behavioral modulation, regulation of intracellular levels of cholesterol, and potential neurotoxicity.^ In this study, we have set up the rat glioma C6 cell line as an in vitro model system to examine the expression, induction, and tissue-specific regulation of P450s and P450 reductase. Rat glioma C6 cells were treated with P450 inducers phenobarbital (PB) or benzo(a)anthracene (BA). The presence of P450 reductase and of cytochrome P450 1A1, 1A2, 2A1, 2B1/2, 2C7, 2D1-5 and 2E1 was detected by reverse transcription followed by polymerase chain reaction (RT-PCR) and confirmed by restriction digestion. The induction of P450 1A1 and 2B1/2 and P450 reductase was quantified using competitive PCR. Ten- and five-fold inductions of P450 1A and 2B mRNA after BA or PB treatments, respectively, were detected. Western blot analysis of microsomal preparations of glioma C6 cells demonstrated the presence of P450 1A, 2B and P450 reductase at the protein level. ELISAs showed that BA and PB induce P450 1A and 2B proteins 7.3- and 13.5-fold, respectively. Microsomes prepared from rat glioma C6 cells showed cytochrome P450 CO difference spectra with absorption at or near 450 nm. Microsomes prepared from rat glioma C6 cells demonstrated much higher levels of ethoxyresorufin O-deethylase (EROD) and pentoxyresorufin O-dealkylase (PROD) activity, when treated with BA or PB, respectively. These experiments provide further evidence that the rat glioma C6 cell line contains an active cytochrome P450 monooxygenase system which can be induced by P450 inducers. The mRNAs of P450 1A1 and 2B1/2 can not bind to the oligo(dT) column efficiently, indicating they have very short poly(A) tails. This finding leads us to study the tissue specific regulation of P450s at post-transcriptional level. The half lives of P450 1A1 and 2B1/2 mRNA in glioma C6 cells are only 1/10 and 1/3 of that in liver. This may partly contribute to the low expression level of P450s in glial cells. The induction of P450s by BA or PB did not change their mRNA half lives, indicating the induction may be due to transcriptional regulation. In summary of this study, we believe the presence of the cytochrome P450 monooxygenase system in glial cells of the brain may be important in chemotherapy and carcinogenesis of brain tumors. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulmonary fibrosis is a devastating and lethal lung disease with no current cure. Research into cellular signaling pathways able to modulate aspects of pulmonary inflammation and fibrosis will aid in the development of effective therapies for its treatment. Our laboratory has generated a transgenic/knockout mouse with systemic elevations in adenosine due to the partial lack of its metabolic enzyme, adenosine deaminase (ADA). These mice spontaneously develop progressive lung inflammation and severe pulmonary fibrosis suggesting that aberrant adenosine signaling is influencing the development and/or progression of the disease in these animals. These mice also show marked increases in the pro-fibrotic mediator, osteopontin (OPN), which are reversed through ADA therapy that serves to lower lung adenosine levels and ameliorate aspects of the disease. OPN is known to be regulated by intracellular signaling pathways that can be accessed through adenosine receptors, particularly the low affinity A2BR receptor, suggesting that adenosine receptor signaling may be responsible for the induction of OPN in our model. In-vitro, adenosine and the broad spectrum adenosine receptor agonist, NECA, were able to induce a 2.5-fold increase in OPN transcripts in primary alveolar macrophages. This induction was blocked through antagonism of the A2BR receptor pharmacologically, and through the deletion of the receptor subtype in these cells genetically, supporting the hypothesis that the A2BR receptor was responsible for the induction of OPN in our model. These findings demonstrate for the first time that adenosine signaling is an important modulator of pulmonary fibrosis in ADA-deficient mice and that this is in part due to signaling through the A2BR receptor which leads to the induction of the pro-fibrotic molecule, otseopontin. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lung cancer is the leading cause of cancer death in both men and women in the United States and worldwide. Despite improvement in treatment strategies, the 5-year survival rate of lung cancer patients remains low. Thus, effective chemoprevention and treatment approaches are sorely needed. Mutations and activation of KRAS occur frequently in tobacco users and the early stage of development of non-small cell lung cancers (NSCLC). So they are thought to be the primary driver for lung carcinogenesis. My work showed that KRAS mutations and activations modulated the expression of TNF-related apoptosis-inducing ligand (TRAIL) receptors by up-regulating death receptors and down-regulating decoy receptors. In addition, we showed that KRAS suppresses cellular FADD-like IL-1β-converting enzyme (FLICE)-like inhibitory protein (c-FLIP) expression through activation of ERK/MAPK-mediated activation of c-MYC which means the mutant KRAS cells could be specifically targeted via TRAIL induced apoptosis. The expression level of Inhibitors of Apoptosis Proteins (IAPs) in mutant KRAS cells is usually high which could be overcome by the second mitochondria-derived activator of caspases (Smac) mimetic. So the combination of TRAIL and Smac mimetic induced the synthetic lethal reaction specifically in the mutant-KRAS cells but not in normal lung cells and wild-type KRAS lung cancer cells. Therefore, a synthetic lethal interaction among TRAIL, Smac mimetic and KRAS mutations could be used as an approach for chemoprevention and treatment of NSCLC with KRAS mutations. Further data in animal experiments showed that short-term, intermittent treatment with TRAIL and Smac mimetic induced apoptosis in mutant KRAS cells and reduced tumor burden in a KRAS-induced pre-malignancy model and mutant KRAS NSCLC xenograft models. These results show the great potential benefit of a selective therapeutic approach for the chemoprevention and treatment of NSCLC with KRAS mutations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oligosaccharide synthesis is an important cryoprotection strategy used by woody plants during winter dormancy. At the onset of autumn, starch stored in the stem and buds is broken down in response to the shorter days and lower temperatures resulting in the buildup of oligosaccharides. Given that the enzyme DSP4 is necessary for diurnal starch degradation in Arabidopsis leaves, this study was designed to address the role of DSP4 in this seasonal process in Castanea sativa Mill. The expression pattern of the CsDSP4 gene in cells of the chestnut stem was found to parallel starch catabolism. In this organ, DSP4 protein levels started to rise at the start of autumn and elevated levels persisted until the onset of spring. In addition, exposure of chestnut plantlets to 4 °C induced the expression of the CsDSP4 gene. In dormant trees or cold-stressed plantlets, the CsDSP4 protein was immunolocalized both in the amyloplast stroma and nucleus of stem cells, whereas in the conditions of vegetative growth, immunofluorescence was only detected in the nucleus. The studies indicate a potential role for DSP4 in starch degradation and cold acclimation following low temperature exposure during activity–dormancy transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Auxin is associated with the regulation of virtually every aspect of plant growth and development. Many previous genetic and biochemical studies revealed that, among the proposed routes for the production of auxin, the so-called indole-3-pyruvic acid (IPA) pathway is the main source for indole-3-acetic acid (IAA) in plants. The IPA pathway involves the action of 2 classes of enzymes, tryptophan-pyruvate aminotransferases (TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1(TAA1)/TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR)) and flavin monooxygenases (YUCCA). Both enzyme classes appear to be encoded by small gene families in Arabidopsis consisting of 5 and 11 members, respectively. We recently showed that it is possible to induce transcript accumulation of 2 YUCCA genes, YUC8 and YUC9, by methyl jasmonate treatment. Both gene products were demonstrated to contribute to auxin biosynthesis in planta.1 Here we report that the overexpression of YUC8 as well as YUC9 led to strong lignification of plant aerial tissues. Furthermore, new evidence indicates that this abnormally strong secondary growth is linked to increased levels of ethylene production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of an ovulation-inducing factor (OIF) in the seminal plasma (SP) of several species with spontaneous and induced ovulation, including the rabbit, has been documented. Recent studies have demonstrated that the OIF in the SP of camels (SPCAM) is a nerve growth factor (β-NGF). The aim of this study was to determine if purified β-NGF from mouse submandibular glands or SPCAM could provoke ovulation induction in the rabbit doe. A total of 35 females were synchronized with 25 IU of equine chorionic gonadotropin (Serigan, Laboratorios Ovejero, Spain) and allocated into 4 groups. Forty-eight hours later (Day 0), does were given a single dose (IM) of 1 mL of saline solution (SS; n = 8); 1 mL of gonadorelin (GnRH; Inducel, Laboratorios Ovejero, Spain; n = 9); 24 µg of β-NGF (2.5S-NGF; Promega, USA; n = 10); or 1 mL of centrifuged raw camel SP (SPCAM; 127 pg mL–1 NGF; n = 8). After treatment, an empty catheter was introduced through the vagina to simulate the nervous/mechanical stimulus of coitus (4 animals per group). Plasma LH concentrations were determined in blood samples taken 30 min before treatment and at 0, 30, 60, 90, and 120 min after injection. Progesterone concentrations were assessed at 0 and 120 min and every 2 days until Day 6 after treatment. Concentrations of β-NGF in camel SP and hormone determinations were made by enzyme immunoassay. Ovulation rate (OR) was determined after euthanasia on Day 7.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Instability of repetitive sequences, both in intronic sequences and within coding regions, has been demonstrated to be a hallmark of genomic instability in human cancer. Understanding how these mutational events arise may provide an opportunity for prevention or early intervention in cancer development. To study the source of this instability, we have identified a region of the β-lactamase gene that is tolerant to the insertion of fragments of exogenous DNA as large as 1,614 bp with minimal loss of enzyme activity, as determined by antibiotic resistance. Fragments inserted out-of-frame render Escherichia coli sensitive to antibiotic, and compensatory frameshift mutations that restore the reading frame of β-lactamase can be selected on the basis of antibiotic resistance. We have utilized this site to insert a synthetic microsatellite sequence within the β-lactamase gene and selected for mutations yielding frameshifts. This assay provides for detection of one frameshift mutation in a background of 106 wild-type sequences. Mismatch repair deficiency increased the observed frameshift frequency ≈300-fold. Exposure of plasmid containing microsatellite sequences to hydrogen peroxide resulted in frameshift mutations that were localized exclusively to the microsatellite sequences, whereas DNA damage by UV or N-methyl-N′-nitro-N-nitrosoguanidine did not result in enhanced mutagenesis. We postulate that in tumor cells, endogenous production of oxygen free radicals may be a major factor in promoting instability of microsatellite sequences. This β-lactamase assay may provide a sensitive methodology for the detection and quantitation of mutations associated with the development of cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NF-κB is a major transcription factor consisting of 50(p50)- and 65(p65)-kDa proteins that controls the expression of various genes, among which are those encoding cytokines, cell adhesion molecules, and inducible NO synthase (iNOS). After initial activation of NF-κB, which involves release and proteolysis of a bound inhibitor, essential cysteine residues are maintained in the active reduced state through the action of thioredoxin and thioredoxin reductase. In the present study, activation of NF-κB in human T cells and lung adenocarcinoma cells was induced by recombinant human tumor necrosis factor α or bacterial lipopolysaccharide. After lipopolysaccharide activation, nuclear extracts were treated with increasing concentrations of selenite, and the effects on DNA-binding activity of NF-κB were examined. Binding of NF-κB to nuclear responsive elements was decreased progressively by increasing selenite levels and, at 7 μM selenite, DNA-binding activity was completely inhibited. Selenite inhibition was reversed by addition of a dithiol, DTT. Proportional inhibition of iNOS activity as measured by decreased NO products in the medium (NO2− and NO3−) resulted from selenite addition to cell suspensions. This loss of iNOS activity was due to decreased synthesis of NO synthase protein. Selenium at low essential levels (nM) is required for synthesis of redox active selenoenzymes such as glutathione peroxidases and thioredoxin reductase, but in higher toxic levels (>5–10 μM) selenite can react with essential thiol groups on enzymes to form RS–Se–SR adducts with resultant inhibition of enzyme activity. Inhibition of NF-κB activity by selenite is presumed to be the result of adduct formation with the essential thiols of this transcription factor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have identified a developmentally essential gene, UbcB, by insertional mutagenesis. The encoded protein (UBC1) shows very high amino acid sequence identity to ubiquitin-conjugating enzymes from other organisms, suggesting that UBC1 is involved in protein ubiquitination and possibly degradation during Dictyostelium development. Consistent with the homology of the UBC1 protein to UBCs, the developmental pattern of protein ubiquitination is altered in ubcB-null cells. ubcB-null cells are blocked in the ability to properly execute the developmental transition that occurs between the induction of postaggregative gene expression during mound formation and the induction of cell-type differentiation and subsequent morphogenesis. ubcB-null cells plated on agar form mounds with normal kinetics; however, they remain at this stage for ∼10 h before forming multiple tips and fingers that then arrest. Under other conditions, some of the fingers form migrating slugs, but no culmination is observed. In ubcB-null cells, postaggregative gene transcripts accumulate to very high levels and do not decrease significantly with time as they do in wild-type cells. Expression of cell-type-specific genes is very delayed, with the level of prespore-specific gene expression being significantly reduced compared with that in wild-type cells. lacZ reporter studies using developmentally regulated and cell-type-specific promoters suggest that ubcB-null cells show an unusually elevated level of staining of lacZ reporters expressed in anterior-like cells, a regulatory cell population found scattered throughout the aggregate, and reduced staining of a prespore reporter. ubcB-null cells in a chimeric organism containing predominantly wild-type cells are able to undergo terminal differentiation but show altered spatial localization. In contrast, in chimeras containing only a small fraction of wild-type cells, the mature fruiting body is very small and composed almost exclusively of wild-type cells, with the ubcB-null cells being present as a mass of cells located in extreme posterior of the developing organism. The amino acid sequence analysis of the UbcB open reading frame (ORF) and the analysis of the developmental phenotypes suggest that tip formation and subsequent development requires specific protein ubiquitination, and possibly degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expression of BAX, without another death stimulus, proved sufficient to induce a common pathway of apoptosis. This included the activation of interleukin 1β-converting enzyme (ICE)-like proteases with cleavage of the endogenous substrates poly(ADP ribose) polymerase and D4-GDI (GDP dissociation inhibitor for the rho family), as well as the fluorogenic peptide acetyl-Asp-Glu-Val-Asp-aminotrifluoromethylcoumarin (DEVD-AFC). The inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk) successfully blocked this protease activity and prevented FAS-induced death but not BAX-induced death. Blocking ICE-like protease activity prevented the cleavage of nuclear and cytosolic substrates and the DNA degradation that followed BAX induction. However, the fall in mitochondrial membrane potential, production of reactive oxygen species, cytoplasmic vacuolation, and plasma membrane permeability that are downstream of BAX still occurred. Thus, BAX-induced alterations in mitochondrial function and subsequent cell death do not apparently require the known ICE-like proteases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inflammatory destruction of insulin-producing β cells in the pancreatic islets is the hallmark of insulin-dependent diabetes mellitus, a spontaneous autoimmune disease of non-obese diabetic mice resembling human juvenile (type I) diabetes. Histochemical analysis of diabetic pancreata revealed that mononuclear cells infiltrating the islets and causing autoimmune insulitis, as well as local islet cells, express the CD44 receptor; hyaluronic acid, the principal ligand of CD44, is detected in the islet periphery and islet endothelium. Injection of anti-CD44 mAb 1 hr before cell transfer of diabetogenic splenocytes and subsequently on alternate days for 4 weeks induced considerable resistance to diabetes in recipient mice, reflected by reduced insulitis. Contact sensitivity to oxazolone was not influenced by this treatment. A similar antidiabetic effect was observed even when the anti-CD44 mAb administration was initiated at the time of disease onset: i.e., 4–7 weeks after cell transfer. Administration of the enzyme hyaluronidase also induced appreciable resistance to insulin-dependent diabetes mellitus, suggesting that the CD44–hyaluronic acid interaction is involved in the development of the disease. These findings demonstrate that CD44-positive inflammatory cells may be a potential therapeutic target in insulin-dependent diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Induction of phase 2 enzymes, which neutralize reactive electrophiles and act as indirect antioxidants, appears to be an effective means for achieving protection against a variety of carcinogens in animals and humans. Transcriptional control of the expression of these enzymes is mediated, at least in part, through the antioxidant response element (ARE) found in the regulatory regions of their genes. The transcription factor Nrf2, which binds to the ARE, appears to be essential for the induction of prototypical phase 2 enzymes such as glutathione S-transferases (GSTs) and NAD(P)H:quinone oxidoreductase (NQO1). Constitutive hepatic and gastric activities of GST and NQO1 were reduced by 50–80% in nrf2-deficient mice compared with wild-type mice. Moreover, the 2- to 5-fold induction of these enzymes in wild-type mice by the chemoprotective agent oltipraz, which is currently in clinical trials, was almost completely abrogated in the nrf2-deficient mice. In parallel with the enzymatic changes, nrf2-deficient mice had a significantly higher burden of gastric neoplasia after treatment with benzo[a]pyrene than did wild-type mice. Oltipraz significantly reduced multiplicity of gastric neoplasia in wild-type mice by 55%, but had no effect on tumor burden in nrf2-deficient mice. Thus, Nrf2 plays a central role in the regulation of constitutive and inducible expression of phase 2 enzymes in vivo and dramatically influences susceptibility to carcinogenesis. Moreover, the total loss of anticarcinogenic efficacy of oltipraz in the nrf2-disrupted mice highlights the prime importance of elevated phase 2 gene expression in chemoprotection by this and similar enzyme inducers.