942 resultados para Enseñanza de Matemática


Relevância:

40.00% 40.00%

Publicador:

Resumo:

En los contenidos y la metodología secundaria y ,sobre todo, en el primer ciclo, de 12 a 16 años, no se consiguen criterios que logren un consenso medianamente general porque los alumnos de enseñanza media son muy variables y hay que buscar un denominador común útil y comprensible para la mayoría. Las dificultades de la geometría en secundaria han suprimido esta casi totalmente con bases impecablemente sentadas, a partir de las cuales, todo se desarrolla lógicamente sin posibilidad de subirse de la línea general elegida. Desde este punto de vista el aprendizaje carece de importancia. Entre los 12 a 16 años el alumno debe aprender muchas y no es malo que conozca distintos métodos y distintos puntos de vista. No hay que decantarse por ninguna opción. En cualquiera de ellas se puede aprender a razonar y a ejercitar la deducción lógica. La complicación excesiva no es buena, al margen de su valor matemático.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La enseñanza de las matemáticas tiene mucho que ganar si se hace más humana; tanto si es tradicional como no se reduce a la misma cuestión; el proponer una matemática descarnada, encerrada en sí misma. Sus programas hay que darlos completos, ignorando siempre a los niños. Lo que hace que el profesor se vea obligado a condicionarlos lo más deprisa posible sin tener en cuenta su afectividad y su desarrollo personal. El cambio no vendrá por nuestras reformas sólo puede venir de los profesores teniendo un buen contacto adaptado al alumno. La comprensión de asegurar el aprendizaje, pero hay que comprenderles de verdad. Aprendemos de nuestros errores, ya que nos obliga a reflexionar. Mantened todos los lazos con la vida porque esta es la mejor motivación de la enseñanza de las matemáticas y la fuente inagotable de temas pedagógicos. Los variados y atractivos para los jóvenes alumnos que descubren al mismo tiempo que los hechos se matematizan.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reflexión acerca de la enseñanza de las matemáticas. En primer lugar se analizan los factores con incidencia en la enseñanza de las Matemáticas, que son muy diversos, por lo que se descartan algunos. Los que si se consideran en profundidad son los factores de tipo sociológico, y la ausencia de razones últimas, con la crisis del humanismo. Por último se tienen en consideración los problemas pedagógicos en relación con el desarrollo de la matemática.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transcripción de la conferencia pronunciada por Luis A. Santaló, el 23 de junio de 1965, en la Sociedad Científica Argentina, sobre el concepto de matemática moderna y su evolución a lo largo de la historia, su papel o influencia en el estilo de la investigación, el éxito de su estudio en la enseñanza superior, y el intento de introducirla en la enseñanza secundaria.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Estudio acerca de lo que constituye la matemática moderna en todos los niveles y en especial en el nivel de la enseñanza media. Se hace referencia a las conclusiones elaboradas al respecto, a partir de conferencias organizadas por la Société Mathématique de Francia en colaboración con L'Association des Professeurs de Mathématiques de l'Enseignement Public en el año 1956. El problema central que ha preocupado en todas estas reuniones ha sido: cual es la matemática que debe enseñarse en la actualidad en los diversos grados y especialidades en los que interviene esta disciplina. A continuación se tratan en profundidad aspectos como el origen del problema de la enseñanza de las matemáticas, se reflexiona acerca de lo que es la matemática moderna, y se realizan las consecuentes impugnaciones o críticas a esta matemática moderna, destacando lo enormemente abstracta que resulta. Para terminar se señalan una serie de conclusiones generales.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Discurso del profesor Pedro Puig Adam en la XXVI Semana Pedagógica de la Federación de Amigos de la Enseñanza, sobre la necesidad de colaboración entre la enseñanza oficial y la privada, para la mejora de los métodos pedagógicos y la educación en general.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dentro del marco de las charlas sobre Didáctica de la matemática en Bachillerato Elemental organizado por el Seminario de Didáctica de Matemáticas de la Universidad de Granada, dirigido a profesores de Enseñanza Media, se recoge la charla ofrecida por el Catedrático de Matemáticas del Instituo 'P. Suárez' de Granada, Sr. Marcos, sobre el material didáctico en la Geometría. Explica la importancia de enseñar al alumno a razonar a pensar y a descubrir por sí mismo y no simplemente a memorizar. De este modo, pidiendo a los alumnos que construyan una regla de un solo borde, conseguirán finalmente poder llegar a sumar y restar ángulos y segmentos utilizando un transportador. Solicitando a los alumnos la construcción de triángulos iguales, descubrirán las características y casos de igualdad de los triángulos. Otro instrumento de valor pedagógico es el cartabón, al que uniéndole un segundo, se convierte en un triángulo equilátero. Y, por último, la escuadra, servirá para explicar las características del triángulo rectángulo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Se aborda la tarea de mejorar los métodos de formación del niño español. En concreto, se trata la enseñanza de la Matemática tradicional y sus consecuencias. Se efectúa un balance de los progresos que en materia de programa y método se han realizado. Se destaca la necesidad de una didáctica activa y heurística, con el fin de que el alumno elabore por sí mismo los conceptos y conocimientos que tenga que adquirir. Se citan algunos ejemplos diversos de iniciación heurística y, por ultimo, se ofrece un análisis de las objeciones más frecuentes que se han formulado: lentitud del procedimiento, falta de homogeneidad de la clase, el elevado número de alumnos en las clases, y la obsesión de los exámenes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Propone una didáctica de las Matemáticas que desarrolle en los niños las facultades de observación, imaginación, adaptación, creación e inventiva. Recalca la importancia de la enseñanza experimental y activa en los primeros cursos escolares y la ayuda que ha supuesto el descubrimiento de la teoría de los conjuntos para hacer más concreta y asequible a los alumnos la explicación matemática. Teniendo en cuenta estos principios generales, se abordan los problemas específicos que presenta su enseñanza en cada uno de los cursos de primaria.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Se exponen varias ideas surgidas de los estudios de Piaget, según los cuales, existe una estrecha relación entre las estructuras más abstractas y generales de la matemática moderna con las estructuras mentales, también, que el pensamiento se apoya en la acción, y por último, que en el desarrollo de estas operaciones mentales se siguen una serie de etapas. Teniendo en cuenta estos conceptos se señalan las características que debe reunir el material didáctico de la matemática moderna y se describen algunos de los materiales más frecuentes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Los importantes cambios conceptuales habidos en la matemática y la consiguiente renovación respecto de sus contenidos y pedagogía, han sentado los fundamentos de una educación de la matemática verdaderamente lógica. Estas nuevas perspectivas se materializan en las conclusiones a las que llega el congreso internacional sobre la enseñanza de la matemática moderna, celebrado en Lyon.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Monográfico con el título: 'Educación matemática y tecnologías de la información'. Resumen basado en el de la publicación

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La Comisión Internacional para el estudio y mejora de la enseñanza matemática nace de la inquietud de matemáticos, pedagogos, psicólogos y epistemólogos, interesados en estudiar y remediar el fallo que en la educación de todos los países presentaba la enseñanza de las matemáticas, especialmente en los niveles primario y secundario. Estos expertos estimaban que la coordinación de esfuerzos comunes en un plano internacional podría realizar el anhelo de una reforma profunda y eficaz en los programas, métodos y modos de enseñar nuestra ciencia en el mundo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Comprobar si los conceptos relativos a la Teoría de conjuntos, figuras geométricas y ángulos se adquieren realmente o son sólo generalizaciones que conservan aspectos perceptuales. Observar si los niños son capaces de aplicar estas nociones a la realidad. El trabajo asume que la mejora de la enseñanza de las Matemáticas supone un conocimiento de cómo se construyen las nociones en relación con las situaciones en que se presentan. Propone nuevas modificaciones y criterios didácticos para la enseñanza de las Matemáticas. Nociones de la Teoría de conjuntos: 60 ss. entre 5 y 12 años pertenecientes a colegio publico (clase media) y otro privado (clase media-alta y media). Se seleccionaron 5 sujetos por cada nivel de edad. Comprensión de figuras geométricas: 40 ss. de primero a octavo de EGB (cinco por curso) pertenecientes a un colegio nacional de Madrid. Comprensión del concepto de ángulo: 30 ss. de tercero a octavo de EGB (5 sujetos por curso) pertenecientes a un colegio nacional de las afueras de Madrid. Aplicación de nociones matemáticas a problema de engranajes: 42 ss. entre 7 y 12 años de los cursos segundo y sexto de EGB (7 sujetos por nivel de edad) pertenecientes a un colegio nacional de Madrid. Cuatro diseños que evalúan comprensión de nociones en ámbitos diferentes. Siguiendo el método clínico en las que se evalúan dificultades de comprensión, aplicación a situaciones reales, ejemplos y utilidad percibida de diferentes conceptos (estos aspectos funcionan como variable dependiente). La variable independiente es la edad o el curso, según casos. Entrevistas individuales, fueron grabadas en audio y codificadas simultáneamente por dos observadores. Los datos fueron distribuidos en niveles según el grado de comprensión que denotaban los protocolos. Diseños: I, Teoria de conjuntos: 5-sujetos-x6-niveles de edad- x2-centros-. Intrasujeto. II, figuras geométricas: 5-sujetos-x8-cursos-. Intrasujeto. III, ángulos: 5-sujetos-x6-cursos-. Intrasujeto. IV, engranajes: 7-sujetos-x6-cursos-. Intrasujeto. Nociones sobre conjuntos: no se asimilan hasta cuarto de EGB, y a partir de aquí sólo de forma parcial. Frecuente que el niño confunda la noción de conjunto con su representación gráfica. Tampoco existe relación con las restantes nociones de Matemáticas. Figuras geométricas: se identifican como tales sólo en determinadas posiciones. No hay una comprensión de los conceptos, sólo una asociación entre una palabra y una figura determinada. El concepto de ángulo se asocia a longitud de los lados. Engranajes: se observan grandes dificultades de comprensión de desplazamientos y direcciones. No son capaces de relacionar nociones matemáticas, que ya poseen, con este problema para solucionarlo. La deformación a que someten los niños las enseñanzas para adaptarlas a su estructura mental ponen de manifiesto tales estructuras. Los conceptos elaborados por el niño tienen una alta dependencia de las configuraciones perceptivas y anecdóticas sin alcanzar verdadera comprensión. Se observa gran dificultad para aplicar estas nociones a problemas concretos. Recomendaciones curriculares para mejorar la enseñanza de las Matemáticas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Implicaciones de la Matemática moderna en la enseñanza, en relación con el alumno y profesor. 4 Partes: I. Fines y contenidos de la enseñanza matemática actual, revisar programas anteriores, objetivos programados y relación con otras materias. II. Metodología matemática, métodos actuales y desarrollos específicos. III. Recursos y evaluación, estado de implantación de la nueva Matemática, preparación del profesorado y papel del seminario didáctico. IV. Tratamiento estadístico de datos. Resultados sobre la adquisición de los objetivos de la taxonomía NLSMA, influencia de diversas variables (factores de éxito, Standford) en la dificultad de los problemas y estudio de la conducta del profesor, por el método Amidon-Flanders. Para modelo Standford, 5 centros de BUP (400 alumnos) más otra de 300 universitarios. Taxonomía NLSMA, varios centros (470 alumnos). Método Flanders: 6 profesores. Taxonomía NLSMA: cuestionario, bloques con número desigual. Modelo Standford: variables independientes: tipo de problema, n pasos en la resolución, inclusión de información superflua y existencia de frase clave. Diseño factorial 4x2x2x2. Evaluación de profesorado y seminarios: encuesta por correo. Criterios muestrales: tamaño del centro, zona geográfica. Variables controladas: centro, profesor y provincia. Método Flanders, grabación de las clases. Sistema de codificación de conductas e interacciones modificado con 10 categorías de ocurrencia. Sobre textos escolares concluyen que su extensión e interpretación es diversa, no plantean objetivos de conducta y adolecen de errores conceptuales. De la encuesta al profesorado extrae que casi todos son matemáticos, con poca formación adiccional. La mitad prefieren el sistema tradicional de enseñanza y aceptan la matemática moderna. Respecto a los seminarios, pobre funcionamiento. No esta extendida la evaluación previa del nivel del alumno y los programas no suelen incluir procedimientos de rectificación. El método NLSMA, útil para analizar las adquisiciones progresivas obteniendose agrupaciones características según niveles. La influencia de variables Standford es significativa y depende del nivel académico. La observación del profesor revela patrones de comportamiento característicos. Método válido para estudiar la interacción profesor-alumno. Ofrece programación completa y cuestionarios de evaluación para diversas áreas de Matemáticas. Resalta la importancia del seminario para organizar y evaluar. Relación maestro-alumno-materia como factor decisivo en el aprendizaje.