839 resultados para Emotions and Portable Interactive Devices


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This short video is designed to make you think about the safety aspects of working with lasers within laser laboratories. Postgraduates and research fellows work with many different types of lasers in a variety of different experimental conditions. These lasers are often more powerful than those used as an undergraduate and require additional safety practices. The video was demonstrated to the EUNIS 2008 conference Aarhus, Denmark, and was a finalist in the Dorup E-Learning Award.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physiological parameters measured by an embedded body sensor system were demonstrated to respond to changes of the air temperature in an office environment. The thermal parameters were monitored with the use of a wireless sensor system that made possible to turn any existing room into a field laboratory. Two human subjects were monitored over daily activities and at various steady-state thermal conditions when the air temperature of the room was altered from 22-23°C to 25-28°C. The subjects indicated their thermal feeling on questionnaires. The measured skin temperature was distributed close to the calculated mean skin temperature corresponding to the given activity level. The variation of Galvanic Skin Response (GSR) reflected the evaporative heat loss through the body surfaces and indicated whether sweating occurred on the subjects. Further investigations are needed to fully evaluate the influence of thermal and other factors on the output given by the investigated body sensor system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we explore the importance of emotionally inter-dependent relationships to the functioning of embodied social capital and habitus. Drawing upon the experiences of young people with socio-emotional differences, we demonstrate how emotionally inter-dependent and relatively nurturing relationships are integral to the acquisition of social capital and to the co-construction and embodiment of habitus. The young people presented in this paper often had difficulties in forging social relationships and in acquiring symbolic and cultural capital in school spaces. However, we outline how these young people (re)produce and embody alternative kinds of habitus, based on emotionally reciprocal relationships forged through formal and informal leisure activities and familial and fraternal social relationships. These alternative forms of habitus provide sites of subjection, scope for acquiring social and cultural capital and a positive sense of identity in the face of problematic relations and experiences in school spaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new, power-free and flexible detection system named MCFphone for portable colorimetric and fluorescence quantitative sandwich immunoassay detection of prostate specific antigen (PSA). The MCFphone is composed by a smartphone integrated with a magnifying lens, a simple light source and a miniaturised immunoassay platform, the Microcapillary Film (MCF). The excellent transparency and flat geometry of fluoropolymer MCF allowed quantitation of PSA in the range 0.9 to 60 ng/ml with < 7 % precision in 13 minutes using enzymatic amplification and a chromogenic substrate. The lower limit of detection was further improved from 0.4 to 0.08 ng/ml in whole blood samples with the use of a fluorescence substrate. The MCFphone has shown capable of performing rapid (13 to 22 minutes total assay time) colorimetric quantitative and highly sensitive fluorescence tests with good %Recovery, which represents a major step in the integration of a new generation of inexpensive and portable microfluidic devices with commercial immunoassay reagents and off-the-shelf smartphone technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dye-sensitized solar cells, named by us Dye-Cells, are one of the most promising devices for solar energy conversion due to their reduced production cost and low environmental impact, especially those sensitized by natural dyes. The efficiency and stability of devices based on natural sensitizers such as mulberry (Morus alba Lam), blueberry (Vaccinium myrtillus Lam), and jaboticaba`s skin (Mirtus cauliflora Mart) were investigated. Dye-Cells prepared with aqueous mulberry extract presented the highest P(max) value (1.6 mW cm(-2)) with J(sc) = 6.14 mA cm(-2) and V(oc) = 0.49 V, Photoelectrochemical parameters of 16 cm(2) active area devices sensitized by mulberry dye were constant for 14 weeks of continuous evaluation. Moreover, the cell remained stable even after 36 weeks with a fairly good efficiency. Therefore, mulberry dye opens up a perspective of commercial feasibility for inexpensive and environmentally friendly Dye-Cells. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation is focused on theoretical and experimental studies of optical properties of materials and multilayer structures composing liquid crystal displays (LCDs) and electrochromic (EC) devices. By applying spectroscopic ellipsometry, we have determined the optical constants of thin films of electrochromic tungsten oxide (WOx) and nickel oxide (NiOy), the films’ thickness and roughness. These films, which were obtained at spattering conditions possess high transmittance that is important for achieving good visibility and high contrast in an EC device. Another application of the general spectroscopic ellipsometry relates to the study of a photo-alignment layer of a mixture of azo-dyes SD-1 and SDA-2. We have found the optical constants of this mixture before and after illuminating it by polarized UV light. The results obtained confirm the diffusion model to explain the formation of the photo-induced order in azo-dye films. We have developed new techniques for fast characterization of twisted nematic LC cells in transmissive and reflective modes. Our techniques are based on the characteristics functions that we have introduced for determination of parameters of non-uniform birefringent media. These characteristic functions are found by simple procedures and can be utilised for simultaneous determination of retardation, its wavelength dispersion, and twist angle, as well as for solving associated optimization problems. Cholesteric LCD that possesses some unique properties, such as bistability and good selective scattering, however, has a disadvantage – relatively high driving voltage (tens of volts). The way we propose to reduce the driving voltage consists of applying a stack of thin (~1µm) LC layers. We have studied the ability of a layer of a surface stabilized ferroelectric liquid crystal coupled with several retardation plates for birefringent color generation. We have demonstrated that in order to accomplish good color characteristics and high brightness of the display, one or two retardation plates are sufficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This article describes the application and the performance of a cheap, simple and portable device that can be used for colorimetric quantitative determination of captopril (CPT) in pharmaceutical preparations. Methods: The sensor is a light detector resistor (LDR) placed into a black PTFE cell and coupled to a low cost multimeter (Ohmmeter). The instrument has been tested and is easy and fast to use. The quantitative study is based mainly on reduction of ammonium molybdate by captopril, in the presence of sulphuric acid, producing a green-yellow compound (max 407 nm). The calibration curves were obtained by plotting the electric resistance of the LDR against the CPT concentration on the range of 4.60 x 10-4 to 1.84 x 10-3 mol l-1 with a good coefficient of determination (R2 = 0.9962). Results: Statistical analysis of the obtained results showed no significant difference between the proposed methodology and the official reported method as evident from the t-test and variance ratio at 95% confidence level. Conclusion: The results of this study demonstrate that the instrument can be used for simple, accurate, precise, fast, in situ and low-cost colorimetric analysis of captopril in pharmaceuticals products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work studies the gate-induced drain leakage (GIDL) in p- and n-MuGFET structures with different TiN metal gate thickness and high-k gate dielectrics. As a result of this analysis, it was observed that a thinner TiN metal gate showed a larger GIDL due to the different gate oxide thickness and a reduced metal gate work function. In addition, replacing SiON by a high-k dielectric (HfSiON) results for nMuGFETs in a decrease of the GIDL On the other hand, the impact of the gate dielectric on the GIDL for p-channel MuGFETs is marginal. The effect of the channel width was also studied, whereby narrow fin devices exhibit a reduced GIDL current in spite of the larger vertical electric field expected for these devices. Finally, comparing the effect of the channel type, an enhanced GIDL current for pMuGFET devices was observed. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis proposes design methods and test tools, for optical systems, which may be used in an industrial environment, where not only precision and reliability but also ease of use is important. The approach to the problem has been conceived to be as general as possible, although in the present work, the design of a portable device for automatic identification applications has been studied, because this doctorate has been funded by Datalogic Scanning Group s.r.l., a world-class producer of barcode readers. The main functional components of the complete device are: electro-optical imaging, illumination and pattern generator systems. For what concerns the electro-optical imaging system, a characterization tool and an analysis one has been developed to check if the desired performance of the system has been achieved. Moreover, two design tools for optimizing the imaging system have been implemented. The first optimizes just the core of the system, the optical part, improving its performance ignoring all other contributions and generating a good starting point for the optimization of the whole complex system. The second tool optimizes the system taking into account its behavior with a model as near as possible to reality including optics, electronics and detection. For what concerns the illumination and the pattern generator systems, two tools have been implemented. The first allows the design of free-form lenses described by an arbitrary analytical function exited by an incoherent source and is able to provide custom illumination conditions for all kind of applications. The second tool consists of a new method to design Diffractive Optical Elements excited by a coherent source for large pattern angles using the Iterative Fourier Transform Algorithm. Validation of the design tools has been obtained, whenever possible, comparing the performance of the designed systems with those of fabricated prototypes. In other cases simulations have been used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene, the thinnest two-dimensional material possible, is considered as a realistic candidate for the numerous applications in electronic, energy storage and conversion devices due to its unique properties, such as high optical transmittance, high conductivity, excellent chemical and thermal stability. However, the electronic and chemical properties of graphene are highly dependent on their preparation methods. Therefore, the development of novel chemical exfoliation process which aims at high yield synthesis of high quality graphene while maintaining good solution processability is of great concern. This thesis focuses on the solution production of high-quality graphene by wet-chemical exfoliation methods and addresses the applications of the chemically exfoliated graphene in organic electronics and energy storage devices.rnPlatinum is the most commonly used catalysts for fuel cells but they suffered from sluggish electron transfer kinetics. On the other hand, heteroatom doped graphene is known to enhance not only electrical conductivity but also long term operation stability. In this regard, a simple synthetic method is developed for the nitrogen doped graphene (NG) preparation. Moreover, iron (Fe) can be incorporated into the synthetic process. As-prepared NG with and without Fe shows excellent catalytic activity and stability compared to that of Pt based catalysts.rnHigh electrical conductivity is one of the most important requirements for the application of graphene in electronic devices. Therefore, for the fabrication of electrically conductive graphene films, a novel methane plasma assisted reduction of GO is developed. The high electrical conductivity of plasma reduced GO films revealed an excellent electrochemical performance in terms of high power and energy densities when used as an electrode in the micro-supercapacitors.rnAlthough, GO can be prepared in bulk scale, large amount of defect density and low electrical conductivity are major drawbacks. To overcome the intrinsic limitation of poor quality of GO and/or reduced GO, a novel protocol is extablished for mass production of high-quality graphene by means of electrochemical exfoliation of graphite. The prepared graphene shows high electrical conductivity, low defect density and good solution processability. Furthermore, when used as electrodes in organic field-effect transistors and/or in supercapacitors, the electrochemically exfoliated graphene shows excellent device performances. The low cost and environment friendly production of such high-quality graphene is of great importance for future generation electronics and energy storage devices. rn