968 resultados para Embryonic Gonad
Resumo:
Generation of homogeneous oligodendrocytes as donor cells is essential for human embryonic stem cell (hESC)-based cell therapy for demylinating diseases. Herein we present a novel method for efficiently obtaining mature oligodendrocytes from hESCs with high purity (79.7 +/- 6.9%), using hepatocyte growth factor (HGF) and G5 supplement(containing insulin, transferrin, selenite, biotin, hydrocortisone, basic fibroblast growth factor and epidermal growth factor) in a four-step method. We induced hESCs into neural progenitors (NP) with HGF (5 ng/ml) and G5 (1 x) supplemented medium in an adherent differentiation system. The purified NPs were amplified in suspension as neurospheres for 1 month, and terminal oligodendrocyte differentiation was then induced by G5 supplement withdrawal and HGF treatment (20 ng/ml). The cells generated displayed typical morphologies of mature oligodendrocytes and expressed oligodendrocyte markers O4 and myelin basic protein (MBP). Our result revealed that HGF significantly enhanced the proliferation of hESC-derived NPs and promoted the differentiation as well as the maturation of oligodendrocytes from NPs. Further studies suggest that HGF/c-Met signaling pathway might play an important role in oligodendrocyte differentiation in our system. Our studies provide a means for generating the clinically relevant cell type and a platform for deciphering the molecular mechanisms that control oligodendrocyte differentiation. (C) 2009 International Society of Differentiation. Published by Elsevier Ltd. All rights reserved.
Resumo:
We have cloned a mouse homologue (designated Myak) of the yeast protein kinase YAK1. The 1210 aa open reading frame contains a putative protein kinase domain, nuclear localization sequences and PEST sequences. Myak appears to be a member of a growing family of YAK1-related genes that include Drosophila and human Minibrain as well as a recently identified rat gene ANPK that encode a steroid hormone receptor interacting protein. RNA blot analysis revealed that Myak is expressed at low levels ubiquitously but at high levels in reproductive tissues, including testis, epididymis, ovary, uterus, and mammary gland, as well as in brain and kidney. In situ hybridization analysis on selected tissues revealed that Myak is particularly abundant in the hormonally modulated epithelia of the epididymis, mammary gland, and uterus, in round spermatids in the testis, and in the corpora lutea in the ovary, Myak is also highly expressed in the aqueduct of the adult brain and in the brain and spinal cord of day 12.5 embryos, Mol. Reprod. Dev. 55:372-378, 2000. (C) 2000 Wiley-Liss, Inc.
Resumo:
Brain structure and function experience dramatic changes from embryonic to postnatal development. Microarray analyses have detected differential gene expression at different stages and in disease models, but gene expression information during early brain development is limited. We have generated >27 million reads to identify mRNAs from the mouse cortex for>16,000 genes at either embryonic day 18 (E18) or postnatal day 7 (P7), a period of significant synapto-genesis for neural circuit formation. In addition, we devised strategies to detect alternative splice forms and uncovered more splice variants. We observed differential expression of 3,758 genes between the 2 stages, many with known functions or predicted to be important for neural development. Neurogenesis-related genes, such as those encoding Sox4, Sox11, and zinc-finger proteins, were more highly expressed at E18 than at P7. In contrast, the genes encoding synaptic proteins such as synaptotagmin, complexin 2, and syntaxin were up-regulated from E18 to P7. We also found that several neurological disorder-related genes were highly expressed at E18. Our transcriptome analysis may serve as a blueprint for gene expression pattern and provide functional clues of previously unknown genes and disease-related genes during early brain development.
Resumo:
Organisms living in water are inevitably exposed to periods of hypoxia. Environmental hypoxia has been an important stressor having manifold effects on aquatic life. Many fish species have evolved behavioral, physiological, biochemical and molecular adaptations that enable them to cope with hypoxia. However, the molecular mechanisms of hypoxia tolerance in fish, remain unknown. in this study, we used suppression subtractive hybridization to examine the differential gene expression in CAB cells (Carassius auratus blastulae embryonic cells) exposed to hypoxia for 24 h. We isolated 2100 clones and identified 211 differentially expressed genes (e-value <= 5e-3; Identity > 45%). Among the genes whose expression is modified in cells, a vast majority involved in metabolism, signal transduction, cell defense, angiogenesis, cell growth and proliferation. Twelve genes encoding for ERO1-L, p53, CPO, HO-1, MKP2, PFK-2, cystatin B, GLUT1, BTG1, TGF beta 1, PGAM1, hypothetical protein F1508, were selected and identified to be hypoxia-induced using semi-quantitive RT-PCR and real-time PCR. Among the identified genes, two open reading frames (ORFs) encoding for CaBTG1 and Cacystatin B were obtained. The deduced amino acid sequence of CaBTG1 had 94.1%, 72.8%, 72.8%, 72.8%, 68.6% identity with that of DrBTG1, HsBTG1, BtBTG1, MmBTG1 and XIBTG1. Comparison of Cacystatin B with known cystatin B, the molecules exhibited 49.5 to 76.0% identity overall. These results may provide significant information for further understanding of the adaptive mechanism by which C. auratus responds to hypoxia. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The distribution of microcystins (MCs) in various tissues of Wistar rats was studied under laboratory conditions. Rats were injected intravenously (i.v.) with extracted MCs at a dose of 80 mu g MC-LRequivalent/kg body weight. MCs concentrations in various tissues were detected at 1, 2. 4, 6, 12 and 24 h post-injection using liquid chromatography-mass spectrometry (LC-MS). The highest concentration of MCs was found in kidney (0.034-0.295 mu g/g dry weight), followed by lung (0.007-0.067 mu g/g dry weight), stomach (0.010-0.058 mu g/g dry weight) and liver (0.003-0.052 mu g/g dry weight). The maximum MCs content in the whole body of rat, 2.9% of the injected dose, was observed at 2 h post-injection. MCs concentration was higher in kidney than in liver during the experiment, and two peaks of MCs concentration (at 2 and 24 h, respectively) were observed in kidney, indicating that MCs can be excreted directly via kidney of rat. Though heart, intestine, spleen, brain, gonad and stomach contained less than 0.2% of injected MCs during the whole experiment stage, the presence of MCs in these tissues represents potential damage to them. (c) 2008 Elsevier Ltd. All Fights reserved.
Resumo:
Endogenous yolk nutrients are crucial for embryo and larval development in fish, but developmental behavior of the genes that control yolk utilization remains unknown. Apolipoproteins have been shown to play important roles in lipid transport and uptake through the circulation system. In this study, EcApoC-I, the first cloned ApoC-I in teleosts, has been screened from pituitary cDNA library of female orange-spotted grouper (Epinephelus coioides), and the deduced amino acid sequence shows 43.5% identity to one zebrafish (Danio rerio) hypothetical protein similar to ApoC-I, and 21.2%, 21.7%, 22.5%, 20%, and 22.5% identities to Apo C-I of human (Homo sapiens), house mouse (Mus musculus), common tree shrew (Tupaia glis), dog (Canis lupus familiaris) and hamadryas baboon (Papio hamadryas), respectively. Although the sequence identity is low, amphipathic alpha-helices with the potential to bind to lipid were predicted to exist in the EcApoC-I. RT-PCR analysis revealed that it was first transcribed in gastrula embryos and maintained a relatively stable expression level during the following embryogenesis. During embryonic and early larval development, a very high level of EcApoC-I expression was in the yolk syncytial layer, indicating that it plays a significant role in yolk degradation and transfers nutrition to the embryo and early larva. By the day 7 after hatching, EcApoC-I transcripts were observed in brain. In adult, EcApoC-I mRNA was detected abundantly in brain and gonad. In transitional gonads, the EcApoC-I expression is restricted to the germ cells. The data suggested that EcApoC-I might play an important role in brain and gonad morphogenesis and growth.
Resumo:
A laboratory toxic experiment was conducted to examine dose-dependent effects of extracted microcystins (MCs) on embryonic development, larval growth and histopathological changes of southern catfish (Silurus meridionalis). Fertilized eggs were incubated in solutions with four concentrations of MCs (0, 1, 10, 100 mu g MC-LReq l(-1)). Higher MCs retarded egg development (2-10 h delays) and larval growth, reduced hatching rate (up to 45%), and caused high malformation rate (up to 15%) and hepatocytes damage (characterized by disorganization of cell structure and a loss of adherence between hepatocytes, cellular degeneration with vacuolar hepatocytes and marginal nuclei, even hepatocellular necrosis). A 10 mu g MC-LReql(-1) is close to a high concentration in natural cyanobacterial blooms, suggesting a possible existence of such toxic effects in eutrophic waters. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Anadromous Coilia ectenes was sampled from the Yangtze estuary at Chongming and two of the primary upstream spawning grounds at Jingjiang and Anqing in April, May, June and August 2006. Gonad development was analyzed for females. In April, fish were collected in the estuary and at Jingjiang, but not at Anqing. No female was mature (gonad at stages IV or V) at either location. In May, 45% of the females were mature in the estuary, 9% at Jingjiang and 5% at Anqing. In June, 86% were mature in the estuary, 83% at Jingjiang and 7% at Anqing. In August, C. ectenes was absent at Jingjiang. No female was mature in the estuary, and all females were mature at Anqing. Absolute fecundity (AF) increased significantly with standard length (SL) by a power function AF = 2.27 x 10(-6) x SL2.67 (r(2) = 0.57, n = 48, P < 0.05). Mature females in the estuary were smaller than those at Jingjiang and Anqing. Conservation of spawners in the upstream spawning grounds is important because they have a size-related fecundity advantage over the smaller spawners in the estuary.
Resumo:
The objective of this study was to determine the effect of dietary vitamins A, D-3, E, and C on the gonad development, lipid peroxidation, and immune response of yearling rice field eel, Monopterus albus. A 6-wk feeding trial was designed according to an L-16(4(5)) orthogonal design, in which four vitamins, each at four supplementation levels, were arranged. Sixteen diets were mixed with the different vitamin levels and randomly assigned to 16 groups of fish. Increasing dietary vitamin E supplementation level significantly (P <= 0.05) increased the gonadosomatic index and lowered the serum content of malondialdehyde of rice field eel. Increasing dietary vitamin A and C levels also showed similar effect, but the differences were not statistically significant. Serum immunoglobulin M content increased significantly (P <= 0.01) as dietary vitamin C supplementation levels increased. The concentrations of calcium in bones showed significant (P <= 0.05) trend with vitamin D-3 and A supplementation levels, but the bone phosphorus content was not affected by the dietary vitamin levels.
Resumo:
Embryonic stem cells (ESCs) self-renew in a state of naïve pluripotency in which they are competent to generate all somatic cells. It has been hypothesized that, before irreversibly committing, ESCs pass through at least one metastable transition state. This transition would represent a gateway for differentiation and reprogramming of somatic cells. Here, we show that during the transition, the nuclei of ESCs are auxetic: they exhibit a cross-sectional expansion when stretched and a cross-sectional contraction when compressed, and their stiffness increases under compression. We also show that the auxetic phenotype of transition ESC nuclei is driven at least in part by global chromatin decondensation. Through the regulation of molecular turnover in the differentiating nucleus by external forces, auxeticity could be a key element in mechanotransduction. Our findings highlight the importance of nuclear structure in the regulation of differentiation and reprogramming.
Resumo:
The Asian yellow pond turtle, Mauremys mutica (Cantor), is a potential aquaculture target in China owing to the higher values for food and remedy than other species of turtle. In this study, color and morphological changes of fertilized eggs were observed during embryogenesis, and the effects of incubation temperature on embryonic development were analyzed. Both calcium layer and membrane layer are thicker in the middle portion of egg-shell than that in the terminal portion, and become thinner after embryo hatching than before embryonic development. Significant change in the white spot and subsequent white ring on the eggshell occurs during embryonic development. Of five different incubation temperatures used to investigate the effects of incubation temperatures on embryonic development, 29.0 +/- 0.5 degrees C was optimal for embryo survival and development. Moreover, the incubation temperature of 33.0 +/- 0.5 degrees C was harmful effect to embryonic development. The data provide important and useful information for husbandry and management of the Asian yellow pond turtle. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The gonad is an essential organ for generating sperm and ova in vertebrates. This review describes several pilot studies on gonad gene manipulation and development in fish. With antisense RNA techniques, we suppressed the gonad development, and thus the fertility, of an antisense gonadotropin-releasing hormone (sGnRH) transgenic common carp. Then, using a tissue-specific exogenous gene excision strategy with sexual compensation, we knocked out the gonad-specific transgene. Under the control of the rainbow trout protamine promoter, the transgenic fish expressed the reporter gene eGFP specifically in the spermary. These results indicate that the fish gonad is a new model organ that can improve contemporary biotechnology experiments. Herein we discuss the potential of fish gonad manipulation for resolving important biosafety problems regarding transgenic fish generation and producing the new transgenic animal bioreactor.
Resumo:
Embryonic stem (ES) cells provide a unique tool for introducing random or targeted genetic alterations, because it is possible that the desired, but extremely rare recombinant genotypes can be screened by drug selection. ES cell-mediated transgenesis has so far been limited to the mouse. In the fish medaka (Oryzias latipes) several ES cell lines have been made available. Here we report the optimized conditions for gene transfer and drug selection in the medaka ES cell line MES1 as a prelude for gene targeting in fish. MES1 cells gave rise to a moderate to high transfection efficiency by the calcium phosphate co-precipitation (5%), commercial reagents Fugene (11%), GeneJuice (21%) and electroporation (>30%). Transient gene transfer and CAT reporter assay revealed that several enhancers/promoters and their combinations including CMV, RSV and ST (the SV40 virus early gene enhancer linked to the thymidine kinase promoter) were suitable regulatory sequences to drive transgene expression in the MES1 cells. We show that neo, hyg or pac conferred resistance to G418, hygromycin or puromycin for positive selection, while the HSV-tk generated sensitivity to ganciclovir for negative selection. The positive-negative selection procedure that is widely used for gene targeting in mouse ES cells was found to be effective also in MES1 cells. Importantly, we demonstrate that MES1 cells after gene transfer and long-term drug selection retained the developmental pluripotency, as they were able to undergo induced differentiation in vitro and to contribute to various tissues and organs during chimeric embryogenesis.