839 resultados para Embodied embedded cognition
Resumo:
The Lingodroids are a pair of mobile robots that evolve a language for places and relationships between places (based on distance and direction). Each robot in these studies has its own understanding of the layout of the world, based on its unique experiences and exploration of the environment. Despite having different internal representations of the world, the robots are able to develop a common lexicon for places, and then use simple sentences to explain and understand relationships between places even places that they could not physically experience, such as areas behind closed doors. By learning the language, the robots are able to develop representations for places that are inaccessible to them, and later, when the doors are opened, use those representations to perform goal-directed behavior.
Resumo:
While the role of executives’ cognition in organisations’ responses to change is a central topic in strategic cognition research, changes in firms’ environment are typically not measured directly but described either as an event (for example, new industry legislation) or represented by a time period (e.g. when a new technology impacted an industry). The Australian mining sector has witnessed a historically significant change in demand for its products and we begin by developing measures of changes in supply and demand for key commodities during the period 1992-2008. We identify sub-groups of firms based on their activities and commodity sector and examine the relation of these variables to executives’ cognition and to firms’ CapEx. We find industry, firm and cognitive variables are related to both strategic cognition and firms’ CapEx.
Resumo:
This project investigates machine listening and improvisation in interactive music systems with the goal of improvising musically appropriate accompaniment to an audio stream in real-time. The input audio may be from a live musical ensemble, or playback of a recording for use by a DJ. I present a collection of robust techniques for machine listening in the context of Western popular dance music genres, and strategies of improvisation to allow for intuitive and musically salient interaction in live performance. The findings are embodied in a computational agent – the Jambot – capable of real-time musical improvisation in an ensemble setting. Conceptually the agent’s functionality is split into three domains: reception, analysis and generation. The project has resulted in novel techniques for addressing a range of issues in each of these domains. In the reception domain I present a novel suite of onset detection algorithms for real-time detection and classification of percussive onsets. This suite achieves reasonable discrimination between the kick, snare and hi-hat attacks of a standard drum-kit, with sufficiently low-latency to allow perceptually simultaneous triggering of accompaniment notes. The onset detection algorithms are designed to operate in the context of complex polyphonic audio. In the analysis domain I present novel beat-tracking and metre-induction algorithms that operate in real-time and are responsive to change in a live setting. I also present a novel analytic model of rhythm, based on musically salient features. This model informs the generation process, affording intuitive parametric control and allowing for the creation of a broad range of interesting rhythms. In the generation domain I present a novel improvisatory architecture drawing on theories of music perception, which provides a mechanism for the real-time generation of complementary accompaniment in an ensemble setting. All of these innovations have been combined into a computational agent – the Jambot, which is capable of producing improvised percussive musical accompaniment to an audio stream in real-time. I situate the architectural philosophy of the Jambot within contemporary debate regarding the nature of cognition and artificial intelligence, and argue for an approach to algorithmic improvisation that privileges the minimisation of cognitive dissonance in human-computer interaction. This thesis contains extensive written discussions of the Jambot and its component algorithms, along with some comparative analyses of aspects of its operation and aesthetic evaluations of its output. The accompanying CD contains the Jambot software, along with video documentation of experiments and performances conducted during the project.
Resumo:
At the core of our uniquely human cognitive abilities is the capacity to see things from different perspectives, or to place them in a new context. We propose that this was made possible by two cognitive transitions. First, the large brain of Homo erectus facilitated the onset of recursive recall: the ability to string thoughts together into a stream of potentially abstract or imaginative thought. This hypothesis is sup-ported by a set of computational models where an artificial society of agents evolved to generate more diverse and valuable cultural outputs under conditions of recursive recall. We propose that the capacity to see things in context arose much later, following the appearance of anatomically modern humans. This second transition was brought on by the onset of contextual focus: the capacity to shift between a minimally contextual analytic mode of thought, and a highly contextual associative mode of thought, conducive to combining concepts in new ways and ‘breaking out of a rut’. When contextual focus is implemented in an art-generating computer program, the resulting artworks are seen as more creative and appealing. We summarize how both transitions can be modeled using a theory of concepts which high-lights the manner in which different contexts can lead to modern humans attributing very different meanings to the interpretation of one concept.
Resumo:
This chapter explores the changing intellectual landscapes and market-led research within academic institutions as the rise of 'embedded criminology' and argues for knowledges of resistance.
Resumo:
This thesis presents a new approach to compute and optimize feasible three dimensional (3D) flight trajectories using aspects of Human Decision Making (HDM) strategies, for fixed wing Unmanned Aircraft (UA) operating in low altitude environments in the presence of real time planning deadlines. The underlying trajectory generation strategy involves the application of Manoeuvre Automaton (MA) theory to create sets of candidate flight manoeuvres which implicitly incorporate platform dynamic constraints. Feasible trajectories are formed through the concatenation of predefined flight manoeuvres in an optimized manner. During typical UAS operations, multiple objectives may exist, therefore the use of multi-objective optimization can potentially allow for convergence to a solution which better reflects overall mission requirements and HDM preferences. A GUI interface was developed to allow for knowledge capture from a human expert during simulated mission scenarios. The expert decision data captured is converted into value functions and corresponding criteria weightings using UTilite Additive (UTA) theory. The inclusion of preferences elicited from HDM decision data within an Automated Decision System (ADS) allows for the generation of trajectories which more closely represent the candidate HDM’s decision strategies. A novel Computationally Adaptive Trajectory Decision optimization System (CATDS) has been developed and implemented in simulation to dynamically manage, calculate and schedule system execution parameters to ensure that the trajectory solution search can generate a feasible solution, if one exists, within a given length of time. The inclusion of the CATDS potentially increases overall mission efficiency and may allow for the implementation of the system on different UAS platforms with varying onboard computational capabilities. These approaches have been demonstrated in simulation using a fixed wing UAS operating in low altitude environments with obstacles present.
Resumo:
Much of our understanding of human thinking is based on probabilistic models. This innovative book by Jerome R. Busemeyer and Peter D. Bruza argues that, actually, the underlying mathematical structures from quantum theory provide a much better account of human thinking than traditional models. They introduce the foundations for modelling probabilistic-dynamic systems using two aspects of quantum theory. The first, "contextuality", is a way to understand interference effects found with inferences and decisions under conditions of uncertainty. The second, "entanglement", allows cognitive phenomena to be modelled in non-reductionist ways. Employing these principles drawn from quantum theory allows us to view human cognition and decision in a totally new light...
Resumo:
In this paper we introduce the idea of "social contraptions", which are interactive physical devices employed as designerly explorations of social relations as mediated by physical space and artefacts. We present two independent but related design explorations that were situated in fine art and industrial research contexts. We argue that these contraptions open up for exploration some interaction issues related to the theme of ’Embodied Facilitation'. This is particularly in relation to awareness and coordination between interactants as mediated by the spatial and material configuration of the contraptions. These methods, as well as the insights gained from them can contribute to the development of the emerging field of embodied interaction.
Resumo:
This paper presents a new approach for network upgrading to improve the penetration level of Small Scale Generators in residential feeders. In this paper, it is proposed that a common DC link can be added to LV network to alleviate the negative impact of increased export power on AC lines, allowing customers to inject their surplus power with no restrictions to the common DC link. In addition, it is shown that the proposed approach can be a pathway from current AC network to future DC network.
Resumo:
his study presents an improved method of dealing with embedded tax liabilities in portfolio choice. We argue that using a risk-free discount rate is appropriate for calculating the present value of future tax liabilities. Supportive of recent research, our results found a taxation-induced preference of holding equities over bonds, and a location preference of holding equities in the taxable account and bonds in retirement accounts. These important findings contrast with traditional investment advice which suggests a greater capacity for risk in retirement accounts.
Resumo:
The Marquis de Sade was declared, “the fist commandment of art is ‘never to bore,’” and perhaps no other artist of his generation has embodied this sentiment more than Guillermo Gómez- Peña, the Mexican-born performance artist and cultural theorist living in San Francisco. Since the early 1980s Gómez-Peña, along with his performance troupe La Pocha Nostra, have been engaged in “reverse anthropology” staging “postcolonial” performances that foreground race and intervene in our cultural fears and desires by focusing on our obsession with the exotic. He deftly navigates the “post-multicultural” world – accelerated by globalization and nation branding – by using elaborate performative and interactive elements that expose (to the audience) their deeply embedded cultural stereotypes and desires for the other.
Resumo:
This paper presents a new approach for the inclusion of human expert cognition into autonomous trajectory planning for unmanned aerial systems (UASs) operating in low-altitude environments. During typical UAS operations, multiple objectives may exist; therefore, the use of multicriteria decision aid techniques can potentially allow for convergence to trajectory solutions which better reflect overall mission requirements. In that context, additive multiattribute value theory has been applied to optimize trajectories with respect to multiple objectives. A graphical user interface was developed to allow for knowledge capture from a human decision maker (HDM) through simulated decision scenarios. The expert decision data gathered are converted into value functions and corresponding criteria weightings using utility additive theory. The inclusion of preferences elicited from HDM data within an automated decision system allows for the generation of trajectories which more closely represent the candidate HDM decision preferences. This approach has been demonstrated in this paper through simulation using a fixed-wing UAS operating in low-altitude environments.