954 resultados para Electron microscope
Resumo:
Purpose: The aim of this study was to evaluate the interfacial microgap with different materials used for pulp protection. The null hypothesis tested was that the combination of calcium hydroxide, resin-modified glass ionomer, and dentin adhesive used as pulp protection in composite restorations would not result in a greater axial gap than that obtained with hybridization only. Materials and Methods: Standardized Class V preparations were performed in buccal and lingual surfaces of 60 caries-free, extracted human third molars. The prepared teeth were randomly assessed in six groups: (1) Single Bond (SB) (3M ESPE, St. Paul, MN, USA); (2) Life (LF) (Kerr Co., Romulus, MI, USA) + SB; (3) LF + Vitrebond (VT) (3M ESPE) + SB; (4) VT + SB; (5) SB + VT; (6) SB + VT + SB. They were restored with microhybrid composite resin Filtek Z250 (3M ESPE), according to the manufacturer's instructions. However, to groups 5 and 6, the dentin bonding adhesive was applied prior to the resin-modified glass ionomer. The specimens were then thermocycled, cross-sectioned through the center of the restoration, fixed, and processed for scanning electron microscopy. The specimens were mounted on stubs and sputter coated. The internal adaptation of the materials to the axial wall was analyzed under SEM with × 1,000 magnification. Results: The data obtained were analyzed with nonparametric tests (Kruskal-Wallis, p ≤ .05). The null hypothesis was rejected. Calcium hydroxide and resin-modified glass ionomer applied alone or in conjunction with each other (p < .001) resulted in statistically wider microgaps than occurred when the dentin was only hybridized prior to the restoration. ©2005 BC Decker Inc.
Resumo:
Aim: Treatment of periodontal diseases is based on efficient scaling and root planing (SRP) and adequate maintenance of the patient. The effectiveness of SRP is influenced by operator skill, access to the subgingival area, root anatomy, and the quality and type of instrument used for SRP. The aim of this study was to evaluate the cutting edges of Gracey curettes after manufacturing and after resharpening using several techniques. Methods and Material: The cutting edges of a total of 41 new #5-6 stainless steel Gracey curettes were evaluated blindly using scanning electron microscopy (SEM). The quality of the cutting edges was evaluated blindly by a calibrated examiner using micrographs. Data were analyzed using a Kruskal Wallis test and nonparametric two-way multiple comparisons. Results and Conclusions: Different sharpening techniques had significantly different effects on the sharpeness of cutting edges (p<0.05). Sharpening by passing the lateral face of curettes over a sharpening stone and then a #299 Arkansas stone produced a high frequency of smooth, sharp edges or slightly irregular edges between the lateral and coronal faces of the curettes. Sharpening by passing a blunt stone over the curette's lateral face produced the poorest quality cutting edge (a bevel). Sharpening of the coronal curette face produced extremely irregular cutting edges and non-functional wire edges. Sharpening with rotary devices produced extremely irregular cutting edges.
Resumo:
The presence of precipitates in metallic materials affects its durability, resistance and mechanical properties. Hence, its automatic identification by image processing and machine learning techniques may lead to reliable and efficient assessments on the materials. In this paper, we introduce four widely used supervised pattern recognition techniques to accomplish metallic precipitates segmentation in scanning electron microscope images from dissimilar welding on a Hastelloy C-276 alloy: Support Vector Machines, Optimum-Path Forest, Self Organizing Maps and a Bayesian classifier. Experimental results demonstrated that all classifiers achieved similar recognition rates with good results validated by an expert in metallographic image analysis. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
The aim of the present study was to describe the tridimensional morphological characteristics of the lingual papillae and their connective tissue cores (CTCs) in Sprague Dawley rats. Four types of papillae were reported on the dorsal surface. Filiform papillae were distributed on the tongue surface and after epithelial maceration a conic and multifilamentary shape of the CTCs was revealed. Fungiform papillae were reported on the rostral and middle regions covered by a squamous epithelium. After the removal of the epithelium, the shape of a volcano with the taste orifice at its top was noted. Foliate papillae were composed of five pairs of epithelial folds situated on the lateral-caudal margin of the tongue. After the removal of the epithelium, they were shown to be limited by thin laminar projections. The vallate papilla with an oval shape was present in the caudal region and delimited by an incomplete groove. The morphological characteristics of the lingual papillae of Sprague Dowley rats, three-dimensional SEM images, and the types of papillae on the dorsal surface were similar to those reported previously in other rodent mammals. The maceration technique revealed the details of extracellular matrix with varied shapes form of connective tissue cores.
Resumo:
This thesis presents a new imaging technique for ultracold quantum gases. Since the first observation of Bose-Einstein condensation, ultracold atoms have proven to be an interesting system to study fundamental quantum effects in many-body systems. Most of the experiments use optical imaging rnmethods to extract the information from the system and are therefore restricted to the fundamental limitation of this technique: the best achievable spatial resolution that can be achieved is comparable to the wavelength of the employed light field. Since the average atomic distance and the length scale of characteristic spatial structures in Bose-Einstein condensates such as vortices and solitons is between 100 nm and 500 nm, an imaging technique with an adequate spatial resolution is needed. This is achieved in this work by extending the method of scanning electron microscopy to ultracold quantum gases. A focused electron beam is scanned over the atom cloud and locally produces ions which are subsequently detected. The new imaging technique allows for the precise measurement of the density distribution of a trapped Bose-Einstein condensate. Furthermore, the spatial resolution is determined by imaging the atomic distribution in one-dimensional and two-dimensional optical lattices. Finally, the variety of the imaging method is demonstrated by the selective removal of single lattice site. rn
Resumo:
In the long run, the widespread use of slide scanners by pathologists requires an adaptation of teaching methods in histology and cytology in order to target these new possibilities of image processing and presentation via the internet. Accordingly, we were looking for a tool with the possibility to teach microscopic anatomy, histology, and cytology of tissue samples which would be able to combine image data from light and electron microscopes independently of microscope suppliers. With the example of a section through the villus of jejunum, we describe here how to process image data from light and electron microscopes in order to get one image-stack which allows a correlation of structures from the microscopic anatomic to the cytological level. With commercially available image-presentation software that we adapted to our needs, we present here a platform which allows for the presentation of this new but also of older material independently of microscope suppliers.
Resumo:
During postnatal growth the parenchymal septa of rat lung undergo an impressive restructuring. While immature septa are thick and contain two capillary layers, mature septa are slender and contain a single microvascular network. Using the Mercox casting technique and scanning electron microscopy, we investigated the mode and the timing of the transformation of the pulmonary capillary bed. During the third postnatal week the parenchymal septa rapidly mature to match adult morphology. Even in adult lungs, however, remnants of the immature status are present: A capillary bilayer is regularly found at the base and the tip of the septa. Our observations support the concept that reduction of intervening tissue, partial fusion of the two capillary networks, and preferential growth lead to the mature vascular arrangement. The fact that true mature interalveolar septa show a denser capillary network than alveolar walls abutting onto pleura, bronchi, or larger vessels is consonant with the fusion theory. Towards the nonparenchyma, the capillary network surrounding every airspace had no counterpart to fuse with. From quantitative data it can be calculated that owing to lung growth, mesh size should increase more than four times between birth and adult age. The adult lung network, however, is denser than the one in young animals. This means that new meshes must be added during growth. We propose that small holes observed in sheet-like regions of the microvasculature enlarge to form new capillary meshes. With this mechanism of in-itself or intussusceptional growth, sprouting of individual capillary segments to increase network size is no longer needed.
Resumo:
The late Miocene to early Pliocene carbonate-rich sediments recovered at Integrated Ocean Drilling Program (IODP) Site U1338 during the Expedition 320/321 Pacific Equatorial Age Transect (PEAT) program contain abundant calcareous nanno- and microfossils. Geochemical proxies from benthic and planktonic foraminiferal and coccolithophore calcite could be very useful at this location; however, good preservation of the calcite is crucial for the proxies to be robust. Here, we evaluate the preservation of specific benthic and planktonic foraminifer species and coccolithophores in fine fraction sediment at Site U1338 using backscattered electron (topography mode) scanning electron microscopy (BSE-TOPO SEM). Both investigated foraminiferal species, Cibicidoides mundulus and Globigerinoides sacculifer, have undergone some alteration. The C. mundulus show minor evidence for dissolution, and only some specimens show evidence of overgrowth. The Gs. sacculifer show definite signs of alteration and exhibit variable preservation, ranging from fair to poor; some specimens show minor overgrowth and internal recrystallization but retain original features such as pores, spine pits, and internal test-wall growth structure, whereas in other specimens the recrystallization and overgrowth disguise many of the original features. Secondary electron and BSE-TOPO SEM images show that coccolith calcite preservation is moderate or moderate to poor. Slight to moderate etching has removed central heterococcolith features, and a small amount of secondary overgrowth is also visible. Energy dispersive spectroscopy analyses indicate that the main sedimentary components of the fine fraction sediment are biogenic CaCO3 and SiO2, with some marine barite. Based on the investigations in this data report, geochemical analyses on benthic foraminifers are unlikely to be affected by preservation, although geochemical analyses on the planktonic foraminifers should be treated cautiously because of the fair to poor and highly variable preservation.
Resumo:
Moisture transport and dimensional change during wood drying or wetting processes were analyzed based on pictures from an environmental scanning electron microscope (ESEM). This provides quantitative relationships between dimensional changes of total area, cell wall, and lumen, and moisture content for earlywood and latewood. Earlywood and latewood behave similarly but show some quantitative differences. The overall outcome for sections containing both kinds of wood seems to be dominated by the latewood behavior. The observed strain behavior of wood during drying is anisotropic in ways that are inconsistent with explanations solely related to microfibril orientation or earlywood/latewood interactions and more likely may be influenced by ray tracheids.