896 resultados para Electrochemical capacitance spectroscopy


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electrochemical corrosion behavior of Mg-5Al-0.4Mn-xNd (x = 0, 1, 2 and 4 wt.%) alloys in 3.5% NaCl solution was investigated. The corrosion behavior of the alloys was assessed by open circuit potential measure, potentiodynamic polarization, and electrochemical impedance spectroscopy. The electrochemical results show the intermetallic precipitates with Nd behave as less noble cathodes in micro-galvanic corrosion and suppress the cathodic process. During corrosion, Al2O3 and Nd2O3, in proper ratio, is incorporated into the corrosion film, and enhances the corrosion resistance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ti-Zr-V-Mn-Ni-based multi-component alloys demonstrate high discharge capacity in KOH electrolyte. However, the drastic decrease in their discharge capacities makes them unsuitable for use as negative electrode material in the Ni/MH battery. In present work, Ni is partially replaced by Cr in the Ti-Zr-V-Mn-Ni-based alloys to improve their cycle life. The effects of Cr substitution on microstructures and the electrochemical characteristics of the alloys are investigated. It is found that Cr substitution is very effective to improve the cyclic durability of the alloys although the discharge capacity decreases with changing x from 0.05 to 0.20. Some kinetic performances have been also investigated using electrochemical impedance spectroscopy (EIS) and potentiostatic discharge technique.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bioactive ultrathin films with the incorporation of amino-terminated G4 PAMAM dendrimers have been prepared via layer-by-layer self-assembly methods on a gold electrode and used for the DNA hybridization analysis. Surface plasmon resonance (SPR), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS) are used to characterize the successful construction of the multicomponent film on the gold substrate. The dendrimer-modified surfaces improve the immobilization capacity of the probe DNA greatly, compared to the AET (2aminoethanethiol) SAM sensor surfaces without dendrimer molecules. DNA hybridization analysis is monitored by EIS. The dendrimer-based electrochemical impedance DNA biosensor shows high sensitivity and selectivity for DNA hybridization assay. The multicomponent films also display a high stability during repeated regeneration and hybridization cycles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

alpha-Actinin has been shown to be capable of interacting with some special membrane phospholipids directly, which is important for its function. In this study, hybrid bilayer membranes composed of negatively charged lipids are constructed on the surface plasmon resonance gold substrate and on the gold electrode, respectively, and the interaction between alpha-actinin and negatively charged lipids membrane is investigated by surface plasmon resonance, cyclic voltammetry and electrochemical impedance spectroscopy methods. alpha-Actinin is proved to be able to interact with the negatively charged lipids membrane directly. It can also insert at least partly into the membrane or lead to some defect or lesion in the membrane, which increase the permeability of the membrane. This study would bring some insight on the interaction between the alpha-actinin and the cell membranes in vivo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report a sensitive electrochemical aptasensor for adenosine based on electrochemical impedance spectroscopy measurement, which gives not only a label-free but also a reusable platform to make the detection of small molecules simple and convenient.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The structure and electrochemical properties of TiV1.1Mn0.9Nix (x = 0.1-0.7) solid solution electrode alloys have been investigated. It is found that these alloys mainly consist of a solid solution phase with body centered cubic (bcc) structure and a C14 Laves secondary phase. The solid solution alloys show easy activation behavior, high temperature dischargeability, high discharge capacity and favorable high-rate dischargeability as a negative electrode material in Ni-MH battery. The maximum discharge capacity is 502 mAh g(-1) at 303 K when x = 0.4. Electrochemical impedance spectroscopy (EIS) test shows that the charge-transfer resistance at the surface of the alloy electrodes decreases obviously with increasing Ni content.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Effect of cerium on the microstructure and electrochemical performance of the Ti0.25V0.35-xCexCr0.1Ni0.3 (x = 0, 0.005) electrode alloy was investigated by X-ray diffraction (XRD), field emission scanning electron microscopy/energy dispersive X-ray spectrometry (FESEM-EDS), and electrochemical impedance spectroscopy (EIS) measurements. On the basis of XRD and FESEM-EDS analysis, the alloy was mainly composed of V-based solid solution with body-centered-cubic structure and TiNi-based secondary phase. Ce did not exist in two phases, instead, it existed as Ce-rich small white particles, with irregular edges, distributed near the grain boundaries of the V-based solid solution phase. Discharge capacity, cycle stability, and high-rate discharge ability of the alloy electrode were effectively improved with the addition of Ce at 293 K. It was very surprising that the charge retention was abnormal with larger discharge capacity after standing at the open circuit for 24 h. EIS indicated that addition of Ce improved the dynamic performance, which caused the charge transfer resistance (R-T) to decrease and exchange current density (I-0) to increase markedly. The exchange current density of the electrochemical reaction on the alloy surface with Ce addition was about 2.07 and 3.10 times larger than that of the alloy without Ce at 303 and 343 K, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In an attempt to raise the transport number of Li+ to nearly unity in solid polymer electrolytes, commercial perfluorinated sulfonate acid membrane Nafion 117 was lithiated and codissolved with copolymer poly(vinylidene fluoride)hexafluoropropylene. The effect of fumed silica on the physical and electrochemical properties of the single ion conduction polymer electrolyte was studied with atom force microscopy, fourier transform infrared spectroscopy, differential scanning calorimetry, and electrochemical impedance spectroscopy. It was confirmed that the fumed silica has an obvious effect on the morphology of polymer electrolyte membranes and ionic conductivity. The resulting materials exhibit good film formation, solvent-maintaining capability, and dimensional stability. The lithium polymer electrolyte after gelling with a plasticizer shows a high ionic conductivity of 3.18 x 10(-4) S/cm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Photoluminescent multilayers were fabricated by layer-by-layer deposition between europium-substituted heteropolytungstate K-13 [Eu(SiW11O39)(2)].28H(2)O (denoted ESW) and a cationic polymer of quaternized poly(4-vinylpyridine) partially complexed with osmium bis(2,2'-bipyridine) (denoted as QPVP-Os) on glassy carbon and quartz substrates. The resulting photoluminescent organic-inorganic hybrid multilayers were characterized by electrochemical impedance spectroscopy, UV-Vis absorption spectrometry, cyclic voltammetry and photoluminescence spectra. Electrochemical impedance spectroscopy, UV-Vis absorption spectrometry and cyclic voltammetry results demonstrated that the multilayers were regular growth each layer adsorption. The photoluminescent properties of the films at room temperature were investigated to show the characteristic Eu3+ emission pattern of D-5(0) --> (7) F-j.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The microstructure and electrochemical performance of Ti0.17Zr0.08V0.34Pd0.01Cr0.1Ni0.3 electrode alloy have been investigated using X-ray diffraction, field emission scanning electron microscopy-energy dispersive spectroscopy, inductively coupled plasma and electrochemical impedance spectroscopy. The alloy electrode has a higher discharge capacity than an AB(5) type alloy within a wider temperature span. The increase of the charge-transfer-resistances, and the dissolutions of V and Zr were responsible for the performance degradation of the alloy electrode.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chitosan has shown its potential as a non-viral gene carrier and an adsorption enhancer for subsequent drug delivery to cells. These results showed that chitosan acted as a membrane perturbant. However, there is currently a lack of direct experimental evidence of this membrane perturbance effect, especially for chitosans with low molecular weight (LMW). In this report, the interaction between a lipid (didodecyl dimethylammonium bromide; DDAB) bilayer and chitosan with molecular weight (MW) of 4200 Da was studied with cyclic voltammetry (CV), electrochemical impedance spectroscopy and surface plasmon resonance (SPR). A lipid bilayer was formed by-fusion of oppositely charged lipid vesicles on a mercaptopropionic acid (MPA)-modified gold surface to mimic a cell membrane. The results showed that the LMW chitosan could disrupt the lipid bilayer, and the effect seemed,to be in a concentration-dependent manner.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Monolayer assembly of 2-mercapto-3-n-octylthiophene (MOT) having a relatively large headgroup onto gold surface from its dilute ethanolic solutions has been investigated by electrochemistry. An electrochemical capacitance measurement on the permeability of the monolayer to aqueous ions, as compared with its alkanethiol counterpart [CH3(CH2)(9)SH (DT)] with a similar molecular length, shows that the self-assembled monolayers (SAMs) of MOT can be penetrated by aqueous ions to some extent. Furthermore, organic molecular probes, such as dopamine, can sufficiently diffuse into the monolayer because a diffusion-limited current peak is observed when the dopamine oxidation reaction takes place, showing that the monolayer is loosely packed or dominated by defects. But the results of electron transfer to aqueous redox probes (including voltammetry in Fe(CN)(6)(3-/4-) solutions and electrochemical ac impedance spectrum) confirm that the monolayer can passivate the gold electrode surface effectively for its very low ratio of pinhole defects. Moreover, a heterogeneous patching process involving addition of the surfactants into the SAMs provides a mixed or hybrid membrane that has superior passivating properties. These studies show that the MOT monolayer on the electrode can provide an excellent barrier for hydrated ionic probe penetration but cannot resist the organic species penetration effectively. The unusual properties of the SAMs are attributed to the entity of the relatively large thiophene moiety between the carbon chain and the thiol group.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ultrathin multilayer films of a polybasic lanthanide heteropoly tungstate-molybdate complex and a cationic polymer of quaternized poly(4-vinylpyridine) partially complexed with osmium bis(2,2'-bipyridine) have been fabricated on a gold electrode precoated with a cysteamine self-assembled monolayer. The multilayer films have been characterized by optical spectroscopy, small-angle X-ray diffraction, and electrochemical methods (cyclic voltammetry and electrochemical impedance). Especially, the electrochemical impedance spectroscopy is developed to monitor the layer deposition processes. It provides important information such as double-layer capacitance and charge-transfer resistance. All obtained results reveal regular film growth with each layer adsorption. (C) 2001 The Electrochemical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The inhibiting effect and mechanism of 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylicacid(ciprofloxacin), 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid (norfloxacin) and (-)-(S)-9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl)-7-oxo-7 H-pyrido(1,2,3-de)-1,4-benzoxazine-6 carboxylic acid (ofloxacin) on the corrosion of mild steel in 1 mol/L HCl have been studied using electrochemical method, quantum chemical method and SEM at 303 K. The potentiodynamic results showed that these compounds suppressed both cathodic and anodic processes of mild steel corrosion in 1 mol/L HCl. The impedance spectroscopy showed that R-p values increased, and C-dl values decreased with the rising of the working concentration. Quantum chemical calculation showed that there was a positive correlation between some inhibitors structure properties and the inhibitory efficiency. The inhibitors function through adsorption followed Langmuir isotherm, and chemisorption made more contribution to the adsorption of the inhibitors on the steel surface compared with physical adsorption. SEM analysis suggested that the metal had been protected from aggressive corrosion because of the addition of the inhibitors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the investigation of diniconzole and triadimefon as chemical corrosion inhibitors for freshly polished copper in synthetic seawater (3.5% NaCl solution). Determination of weight loss, polarization curves, electrochemical impedance spectroscopy (EIS), and SEM, were performed to analyze the inhibiting performance of these compounds. Polarization curves show that they act as mixed-type inhibitors. EIS indicates that an adsorption film of the inhibitors is formed on copper surface. The highest values of inhibition efficiency are respectively, 99.2% and 97.3% at 100 mg/L concentration. Thermodynamic calculation suggests that chemisorptions between the compounds and copper are accordance with Langmuir adsorption isotherm. (C) 2010 Elsevier Ltd. All rights reserved.