971 resultados para Efficient dominating set
Resumo:
Clustering is defined as the grouping of similar items in a set, and is an important process within the field of data mining. As the amount of data for various applications continues to increase, in terms of its size and dimensionality, it is necessary to have efficient clustering methods. A popular clustering algorithm is K-Means, which adopts a greedy approach to produce a set of K-clusters with associated centres of mass, and uses a squared error distortion measure to determine convergence. Methods for improving the efficiency of K-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting a more efficient data structure, notably a multi-dimensional binary search tree (KD-Tree) to store either centroids or data points. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient K-Means techniques in parallel computational environments. In this work, we provide a parallel formulation for the KD-Tree based K-Means algorithm and address its load balancing issues.
Resumo:
Farming systems research is a multi-disciplinary holistic approach to solve the problems of small farms. Small and marginal farmers are the core of the Indian rural economy Constituting 0.80 of the total farming community but possessing only 0.36 of the total operational land. The declining trend of per capita land availability poses a serious challenge to the sustainability and profitability of farming. Under such conditions, it is appropriate to integrate land-based enterprises such as dairy, fishery, poultry, duckery, apiary, field and horticultural cropping within the farm, with the objective of generating adequate income and employment for these small and marginal farmers Under a set of farm constraints and varying levels of resource availability and Opportunity. The integration of different farm enterprises can be achieved with the help of a linear programming model. For the current review, integrated farming systems models were developed, by Way Of illustration, for the marginal, small, medium and large farms of eastern India using linear programming. Risk analyses were carried out for different levels of income and enterprise combinations. The fishery enterprise was shown to be less risk-prone whereas the crop enterprise involved greater risk. In general, the degree of risk increased with the increasing level of income. With increase in farm income and risk level, the resource use efficiency increased. Medium and large farms proved to be more profitable than small and marginal farms with higher level of resource use efficiency and return per Indian rupee (Rs) invested. Among the different enterprises of integrated farming systems, a chain of interaction and resource flow was observed. In order to make fanning profitable and improve resource use efficiency at the farm level, the synergy among interacting components of farming systems should be exploited. In the process of technology generation, transfer and other developmental efforts at the farm level (contrary to the discipline and commodity-based approaches which have a tendency to be piecemeal and in isolation), it is desirable to place a whole-farm scenario before the farmers to enhance their farm income, thereby motivating them towards more efficient and sustainable fanning.
Resumo:
A shock capturing scheme is presented for the equations of isentropic flow based on upwind differencing applied to a locally linearized set of Riemann problems. This includes the two-dimensional shallow water equations using the familiar gas dynamics analogy. An average of the flow variables across the interface between cells is required, and this average is chosen to be the arithmetic mean for computational efficiency, leading to arithmetic averaging. This is in contrast to usual ‘square root’ averages found in this type of Riemann solver where the computational expense can be prohibitive. The scheme is applied to a two-dimensional dam-break problem and the approximate solution compares well with those given by other authors.
Resumo:
An efficient numerical method is presented for the solution of the Euler equations governing the compressible flow of a real gas. The scheme is based on the approximate solution of a specially constructed set of linearised Riemann problems. An average of the flow variables across the interface between cells is required, and this is chosen to be the arithmetic mean for computational efficiency, which is in contrast to the usual square root averaging. The scheme is applied to a test problem for five different equations of state.
Resumo:
Numerical experiments are described that pertain to the climate of a coupled atmosphere–ocean–ice system in the absence of land, driven by modern-day orbital and CO2 forcing. Millennial time-scale simulations yield a mean state in which ice caps reach down to 55° of latitude and both the atmosphere and ocean comprise eastward- and westward-flowing zonal jets, whose structure is set by their respective baroclinic instabilities. Despite the zonality of the ocean, it is remarkably efficient at transporting heat meridionally through the agency of Ekman transport and eddy-driven subduction. Indeed the partition of heat transport between the atmosphere and ocean is much the same as the present climate, with the ocean dominating in the Tropics and the atmosphere in the mid–high latitudes. Variability of the system is dominated by the coupling of annular modes in the atmosphere and ocean. Stochastic variability inherent to the atmospheric jets drives variability in the ocean. Zonal flows in the ocean exhibit decadal variability, which, remarkably, feeds back to the atmosphere, coloring the spectrum of annular variability. A simple stochastic model can capture the essence of the process. Finally, it is briefly reviewed how the aquaplanet can provide information about the processes that set the partition of heat transport and the climate of Earth.
Resumo:
Advances in hardware and software technologies allow to capture streaming data. The area of Data Stream Mining (DSM) is concerned with the analysis of these vast amounts of data as it is generated in real-time. Data stream classification is one of the most important DSM techniques allowing to classify previously unseen data instances. Different to traditional classifiers for static data, data stream classifiers need to adapt to concept changes (concept drift) in the stream in real-time in order to reflect the most recent concept in the data as accurately as possible. A recent addition to the data stream classifier toolbox is eRules which induces and updates a set of expressive rules that can easily be interpreted by humans. However, like most rule-based data stream classifiers, eRules exhibits a poor computational performance when confronted with continuous attributes. In this work, we propose an approach to deal with continuous data effectively and accurately in rule-based classifiers by using the Gaussian distribution as heuristic for building rule terms on continuous attributes. We show on the example of eRules that incorporating our method for continuous attributes indeed speeds up the real-time rule induction process while maintaining a similar level of accuracy compared with the original eRules classifier. We termed this new version of eRules with our approach G-eRules.
Resumo:
In this paper we describe and evaluate a geometric mass-preserving redistancing procedure for the level set function on general structured grids. The proposed algorithm is adapted from a recent finite element-based method and preserves the mass by means of a localized mass correction. A salient feature of the scheme is the absence of adjustable parameters. The algorithm is tested in two and three spatial dimensions and compared with the widely used partial differential equation (PDE)-based redistancing method using structured Cartesian grids. Through the use of quantitative error measures of interest in level set methods, we show that the overall performance of the proposed geometric procedure is better than PDE-based reinitialization schemes, since it is more robust with comparable accuracy. We also show that the algorithm is well-suited for the highly stretched curvilinear grids used in CFD simulations. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Drinking water utilities in urban areas are focused on finding smart solutions facing new challenges in their real-time operation because of limited water resources, intensive energy requirements, a growing population, a costly and ageing infrastructure, increasingly stringent regulations, and increased attention towards the environmental impact of water use. Such challenges force water managers to monitor and control not only water supply and distribution, but also consumer demand. This paper presents and discusses novel methodologies and procedures towards an integrated water resource management system based on advanced ICT technologies of automation and telecommunications for largely improving the efficiency of drinking water networks (DWN) in terms of water use, energy consumption, water loss minimization, and water quality guarantees. In particular, the paper addresses the first results of the European project EFFINET (FP7-ICT2011-8-318556) devoted to the monitoring and control of the DWN in Barcelona (Spain). Results are split in two levels according to different management objectives: (i) the monitoring level is concerned with all the aspects involved in the observation of the current state of a system and the detection/diagnosis of abnormal situations. It is achieved through sensors and communications technology, together with mathematical models; (ii) the control level is concerned with computing the best suitable and admissible control strategies for network actuators as to optimize a given set of operational goals related to the performance of the overall system. This level covers the network control (optimal management of water and energy) and the demand management (smart metering, efficient supply). The consideration of the Barcelona DWN as the case study will allow to prove the general applicability of the proposed integrated ICT solutions and their effectiveness in the management of DWN, with considerable savings of electricity costs and reduced water loss while ensuring the high European standards of water quality to citizens.
Resumo:
Application of optimization algorithm to PDE modeling groundwater remediation can greatly reduce remediation cost. However, groundwater remediation analysis requires a computational expensive simulation, therefore, effective parallel optimization could potentially greatly reduce computational expense. The optimization algorithm used in this research is Parallel Stochastic radial basis function. This is designed for global optimization of computationally expensive functions with multiple local optima and it does not require derivatives. In each iteration of the algorithm, an RBF is updated based on all the evaluated points in order to approximate expensive function. Then the new RBF surface is used to generate the next set of points, which will be distributed to multiple processors for evaluation. The criteria of selection of next function evaluation points are estimated function value and distance from all the points known. Algorithms created for serial computing are not necessarily efficient in parallel so Parallel Stochastic RBF is different algorithm from its serial ancestor. The application for two Groundwater Superfund Remediation sites, Umatilla Chemical Depot, and Former Blaine Naval Ammunition Depot. In the study, the formulation adopted treats pumping rates as decision variables in order to remove plume of contaminated groundwater. Groundwater flow and contamination transport is simulated with MODFLOW-MT3DMS. For both problems, computation takes a large amount of CPU time, especially for Blaine problem, which requires nearly fifty minutes for a simulation for a single set of decision variables. Thus, efficient algorithm and powerful computing resource are essential in both cases. The results are discussed in terms of parallel computing metrics i.e. speedup and efficiency. We find that with use of up to 24 parallel processors, the results of the parallel Stochastic RBF algorithm are excellent with speed up efficiencies close to or exceeding 100%.
Resumo:
A pesquisa versa sobre a importância da liderança para uma eficiente prestação jurisdicional, a qual resulta de um concatenado trabalho de equipe entre o juiz e os servidores de uma determinada unidade judicial. A necessidade de o magistrado contribuir para a formação de uma equipe de alto desempenho para o enfrentamento da intempestividade da prestação jurisdicional, principal problema do Poder Judiciário, buscando as almejadas celeridade e efetividade da justiça. A qualidade da prestação jurisdicional dependerá da gestão imprimida pelo juiz na sua unidade. A pesquisa aponta para a necessidade de o juiz exercer sua atividade meio como um líder, dominando técnicas modernas de gestão e também influenciando sua equipe em busca da excelência. Será analisado o tipo de liderança que melhor se amolda à judicatura, que é a servidora. Nela o magistrado identifica as necessidades de seus funcionários e trata de supri-las, recebendo em troca a máxima dedicação e motivação possíveis. O juiz líder administra sua unidade e forja uma equipe qualificada e motivada. Em face da impossibilidade de conceituar o juiz líder, são apontados os seus traços característicos, que o tornam o novo modelo do juiz brasileiro: o juiz líder servidor. Identificação dessas características na dimensão organizacional, na dimensão interpessoal, bem como as habilidades pessoais que o definem. Por fim, é abordada a necessidade de o Judiciário refletir sobre o atual sistema de recrutamento seletivo dos magistrados, priorizando a escolha sobre pessoas vocacionadas e, após a seleção, investir na constante formação de líderes nos seus quadros que, alinhados, proporcionarão uma justiça célere, humana, justa e efetiva.
Resumo:
This paper aims to present, using a set of guidelines, how to apply the conservative distributed simulation paradigm (CMB protocol) to develop efficient applications. Using these guidelines, even a user with little experience on distributed simulation and computer architecture can have good performance on distributed simulations using conservative synchronization protocols for parallel processes.The set of guidelines is focus on a specific application domain, the performance evaluation of computer systems, considering models with coarse granularity and few logical processes and running over two platforms: parallel (high performance communication environment) and distributed (low performance communication environment).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A teoria de Garret Hardin intitulada “A tragédia dos comuns” apresenta a privatização e o controle governamental como saída para evitar o esgotamento dos recursos naturais. Entretanto, outros autores demonstraram que os usuários dos recursos podem apresentar eficientes formas de manejo, aliando o uso pelo homem à conservação da natureza. Esta tese analisa o uso de recursos comuns em Unidades de Conservação e Assentamentos Rurais de Uso Sustentável, localizadas no interflúvio Purus-Madeira, região Sul do Estado do Amazonas. A pergunta que norteou a hipótese da pesquisa foi: Diante das especificidades amazônicas e das regras impostas pelas políticas ambientais e agrárias na região, quais condições apresentam-se como necessárias e suficientes ao bom desempenho no uso de recursos comuns? A análise foi realizada por meio da combinação de três métodos: o método comparativo Qualitative Comparative Analysis (QCA), o método de análise institucional Institutional Analysis and Development (IAD) Framework e a lógica fuzzy. Operacionalmente, foram consideradas como variáveis independentes (X) os aspectos socioeconômicos, produtivos, ambientais e institucionais, partindo-se do pressuposto de que os programas governamentais destinados às Unidades devem apresentar melhorias nestes indicadores, refletindo por sua vez no bom desempenho no uso de recursos comuns (variável dependente Y) a partir deste desenho institucional. Os resultados confirmaram as hipóteses levantadas, afirmando-se que o bom desempenho no uso de recursos comuns, preconizado pelos critérios da sustentabilidade, somente pode ser alcançado mediante a combinação de um desempenho também satisfatório nas variáveis socioeconômicas, produtivas, institucionais e ambientais, apresentando-se estas variáveis como individualmente necessárias e conjuntamente suficientes para ocorrência deste fenômeno.
Resumo:
The design of a network is a solution to several engineering and science problems. Several network design problems are known to be NP-hard, and population-based metaheuristics like evolutionary algorithms (EAs) have been largely investigated for such problems. Such optimization methods simultaneously generate a large number of potential solutions to investigate the search space in breadth and, consequently, to avoid local optima. Obtaining a potential solution usually involves the construction and maintenance of several spanning trees, or more generally, spanning forests. To efficiently explore the search space, special data structures have been developed to provide operations that manipulate a set of spanning trees (population). For a tree with n nodes, the most efficient data structures available in the literature require time O(n) to generate a new spanning tree that modifies an existing one and to store the new solution. We propose a new data structure, called node-depth-degree representation (NDDR), and we demonstrate that using this encoding, generating a new spanning forest requires average time O(root n). Experiments with an EA based on NDDR applied to large-scale instances of the degree-constrained minimum spanning tree problem have shown that the implementation adds small constants and lower order terms to the theoretical bound.