991 resultados para Edge-defined film-fed crystal growth method (EFG)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-time phase shift Mach-Zehnder interference technique, imaging technique, and computer image processing technique were combined to perform a real-time diagnosis of NaClO3 crystal, which described both the dissolution process and the crystallization process of the NaClO3 crystal in real-time condition. The dissolution fringes and the growth fringes in the process were obtained. Moreover, a distribution of concentration field in this process was obtained by inversion calculation. Finally, the buoyancy convection phenomenon caused by gravity in the crystal growth process was analyzed. The results showed that this convection phenomenon directly influences the growth rate of each crystal face in the crystal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-quality 2at%-doped Yb:CaF2 and Yb,Na:CaF2 single crystals with diameter of 76mm were grown by the temperature gradient technique. For the first time, distribution coefficients (KO) of Yb in the two crystals were determined to be 1.07 and 0.91, respectively, by measuring the Yb concentrations at the growth starting position in the as-grown boules. Absorption and emission spectra of the two different crystals were measured at room temperature. Experimental results show that Na+ ions codoping with Yb3+ as charge compensators make Yb3+ ions in CaF2 lattice to be a quasi-single-center system, and greatly suppress the deoxidization of Yb3+ to Yb2+ (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The National Science Foundation of China(Grant No. 60578044).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An improved selective area growth (SAG) method is proposed to better the fabrication and performance of the Electroabsorption modulated laser The typical threshold current of the EML is 18mA, and the output power is 5.6mW at EAM facet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical vapor transport studies of GeSe(x)Te1 - x (x = 0.1, 0.2, 0.3, and 0.4) solid solutions demonstrated, that individual, large single crystals of these materials can be grown in closed ampoules. A compositional analysis of the grown crystals revealed, that the mass transport (crystal growth) process under steady-state conditions is pseudo-congruent and controlled by diffusion processes in the source material. From these experiments, the degree of non-stoichiometry (Ge-vacancy concentrations) of GeSe(x)Te1 - x single crystals could be estimated. The effects of the cubic to rhombohedral phase transformation during cooling on the microstructure and morphology of the grown mixed crystals are observed. This work provides the basis for subsequent defect studies and electrical measurements on these crystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to study quantitatively the effects of forced solution on crystal growth, we designed a new set of experimental equipment, in particular, a microchannel mixer was used as crystallization container so that the consumption of protein samples was much reduced and thus an exact syringe pump could be used for precise control of the flow rates. Since the mixer’s section was designed to be rectangular, the solution velocity in its center was steady and constant, and thus repeatable experiments were facilitated. Experimental results showed that the effects of forced solution on protein crystal growth were different under different levels of supersaturation, and new results were obtained for cases of high supersaturation. When the supersaturation is σ = 2.3, with increasing flow rates the growth rates of the lysozyme crystal’s (110) face hardly change when the flow rates are lower than 1300 μm/s, and decrease quickly afterwards. When the flow rate reaches 2000 μm/s, the crystal nearly ceases to grow. When the supersaturation is σ = 2.7, with increasing flow rates the (110) face growth rates increase at the beginning then reach the maximum values at 1700 μm/s – 1900 μm/s and decrease afterwards, approaching zero or so when the flow rate reaches 12000 μm/s. The higher the supersaturation, the larger the flow rate at which the crystal ceases to grow. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim