957 resultados para ELECTROWEAK SYMMETRY-BREAKING


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reasoning from two basic principles of molecular physics, P invariance of electromagnetic interaction and the second law of thermodynamics, one would conclude that mirror symmetry retained in the world of chiral molecules. This inference is fully consistent with what is observed in inorganic nature. However, in the bioorganic world, the reverse is true. Mirror symmetry there is definitely broken. Is it possible to account for this phenomenon without going beyond conventional concepts of the kinetics of enantioselective processes? This study is an attempt to survey all existing hypotheses containing this phenomenon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the effect of sublattice symmetry breaking on the electronic, magnetic, and transport properties of two-dimensional graphene as well as zigzag terminated one- and zero-dimensional graphene nanostructures. The systems are described with the Hubbard model within the collinear mean field approximation. We prove that for the noninteracting bipartite lattice with an unequal number of atoms in each sublattice, in-gap states still exist in the presence of a staggered on-site potential ±Δ/2. We compute the phase diagram of both 2D and 1D graphene with zigzag edges, at half filling, defined by the normalized interaction strength U/t and Δ/t, where t is the first neighbor hopping. In the case of 2D we find that the system is always insulating, and we find the Uc(Δ) curve above which the system goes antiferromagnetic. In 1D we find that the system undergoes a phase transition from nonmagnetic insulator for U

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conventional mechanism of fermion mass generation in the Standard Model involves Spontaneous Symmetry Breaking (SSB). In this thesis, we study an alternate mechanism for the generation of fermion masses that does not require SSB, in the context of lattice field theories. Being inherently strongly coupled, this mechanism requires a non-perturbative approach like the lattice approach.

In order to explore this mechanism, we study a simple lattice model with a four-fermion interaction that has massless fermions at weak couplings and massive fermions at strong couplings, but without any spontaneous symmetry breaking. Prior work on this type of mass generation mechanism in 4D, was done long ago using either mean-field theory or Monte-Carlo calculations on small lattices. In this thesis, we have developed a new computational approach that enables us to perform large scale quantum Monte-Carlo calculations to study the phase structure of this theory. In 4D, our results confirm prior results, but differ in some quantitative details of the phase diagram. In contrast, in 3D, we discover a new second order critical point using calculations on lattices up to size $ 60^3$. Such large scale calculations are unprecedented. The presence of the critical point implies the existence of an alternate mechanism of fermion mass generation without any SSB, that could be of interest in continuum quantum field theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a model for chiral polymerisation and investigate its symmetric and asymmetric solutions. The model has a source species which decays into left- and right-handed types of monomer, each of which can polymerise to form homochiral chains; these chains are susceptible to `poisoning' by the opposite handed monomer. Homochiral polymers are assumed to influence the proportion of each type of monomer formed from the precursor. We show that for certain parameter values a positive feedback mechanism makes the symmetric steady-state solution unstable. The kinetics of polymer formation are then analysed in the case where the system starts from zero concentrations of monomers and chains. We show that following a long induction time, extremely large concentrations of polymers are formed for a short time, during this time an asymmetry introduced into the system by a random external perturbation may be massively amplified. The system then approaches one of the steady-state solutions described above.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the conjectured “insensitivity to chiral symmetry breaking” in the highly excited light baryon spectrum. While the experimental spectrum is being measured at JLab and CBELSA/TAPS, this insensitivity remains to be computed theoretically in detail. As the only existing option to have both confinement, highly excited states, and chiral symmetry, we adopt the truncated Coulomb-gauge formulation of QCD, considering a linearly confining Coulomb term. Adopting a systematic and numerically intensive variational treatment up to 12 harmonic oscillator shells we are able to access several angular and radial excitations. We compute both the excited spectra of I=1/2 and I=3/2 baryons, up to large spin J=13/2, and study in detail the proposed chiral multiplets. While the static-light and light-light spectra clearly show chiral symmetry restoration high in the spectrum, the realization of chiral symmetry is more complicated in the baryon spectrum than earlier expected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for π-π-scattering imposed by chiral symmetry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a covariant approach in Minkowski space for the description of quarks and mesons that exhibits both chiral-symmetry breaking and confinement. In a simple model for the interquark interaction, the quark mass function is obtained and used in the calculation of the pion form factor. We study the effects of the mass function and the different quark pole contributions on the pion form factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In extensions of the standard model with a heavy fourth generation, one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by choosing the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth-generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study extensions of the standard model with a strongly coupled fourth generation. This occurs in models where electroweak symmetry breaking is triggered by the condensation of at least some of the fourth-generation fermions. With focus on the phenomenology at the LHC, we study the pair production of fourth-generation down quarks, D(4). We consider the typical masses that could be associated with a strongly coupled fermion sector, in the range (300-600) GeV. We show that the production and successive decay of these heavy quarks into final states with same-sign dileptons, trileptons, and four leptons can be easily seen above background with relatively low luminosity. On the other hand, in order to confirm the presence of a new strong interaction responsible for fourth-generation condensation, we study its contribution to D(4) pair production, and the potential to separate it from standard QCD-induced heavy quark production. We show that this separation might require large amounts of data. This is true even if it is assumed that the new interaction is mediated by a massive colored vector boson, since its strong coupling to the fourth generation renders its width of the order of its mass. We conclude that, although this class of models can be falsified at early stages of the LHC running, its confirmation would require high integrated luminosities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the possibility that a new strong interaction is accessible to the Tevatron and the LHC. In an effective theory approach, we consider a scenario with a new color-octet interaction with strong couplings to the top quark, as well as the presence of a strongly coupled fourth generation which could be responsible for electroweak symmetry breaking. We apply several constraints, including the ones from flavor physics. We study the phenomenology of the resulting parameter space at the Tevatron, focusing on the forward-backward asymmetry in top pair production, as well as in the production of the fourth-generation quarks. We show that if the excess in the top production asymmetry is indeed the result of this new interaction, the Tevatron could see the first hints of the strongly coupled fourth-generation quarks. Finally, we show that the LHC with root s = 7 TeV and 1 fb(-1) integrated luminosity should observe the production of fourth-generation quarks at a level at least 1 order of magnitude above the QCD prediction for the production of these states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LHC has found hints for a Higgs particle of 125 GeV. We investigate the possibility that such a particle is a mixture of scalar and pseudoscalar states. For definiteness, we concentrate on a two-Higgs doublet model with explicit CP violation and soft Z(2) violation. Including all Higgs production mechanisms, we determine the current constraints obtained by comparing h -> yy with h -> VV*, and comment on the information which can be gained by measurements of h -> b (b) over bar. We find bounds vertical bar s(2)vertical bar less than or similar to 0.83 at one sigma, where vertical bar s(2)vertical bar = 0 (vertical bar s(2)vertical bar = 1) corresponds to a pure scalar (pure pseudoscalar) state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the two-Higgs-doublet model as a framework in which to evaluate the viability of scenarios in which the sign of the coupling of the observed Higgs boson to down-type fermions (in particular, b-quark pairs) is opposite to that of the Standard Model (SM), while at the same time all other tree-level couplings are close to the SM values. We show that, whereas such a scenario is consistent with current LHC observations, both future running at the LHC and a future e(+)e(-) linear collider could determine the sign of the Higgs coupling to b-quark pairs. Discrimination is possible for two reasons. First, the interference between the b-quark and the t-quark loop contributions to the ggh coupling changes sign. Second, the charged-Higgs loop contribution to the gamma gamma h coupling is large and fairly constant up to the largest charged-Higgs mass allowed by tree-level unitarity bounds when the b-quark Yukawa coupling has the opposite sign from that of the SM (the change in sign of the interference terms between the b-quark loop and the W and t loops having negligible impact).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When performing a full calculation within the standard model (SM) or its extensions, it is crucial that one utilizes a consistent set of signs for the gauge couplings and gauge fields. Unfortunately, the literature is plagued with differing signs and notations. We present all SM Feynman rules, including ghosts, in a convention-independent notation, and we table the conventions in close to 40 books and reviews.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss theoretical and phenomenological aspects of two-Higgs-doublet extensions of the Standard Model. In general, these extensions have scalar mediated flavour changing neutral currents which are strongly constrained by experiment. Various strategies are discussed to control these flavour changing scalar currents and their phenomenological consequences are analysed. In particular, scenarios with natural flavour conservation are investigated, including the so-called type I and type II models as well as lepton-specific and inert models. Type III models are then discussed, where scalar flavour changing neutral currents are present at tree level, but are suppressed by either a specific ansatz for the Yukawa couplings or by the introduction of family symmetries leading to a natural suppression mechanism. We also consider the phenomenology of charged scalars in these models. Next we turn to the role of symmetries in the scalar sector. We discuss the six symmetry-constrained scalar potentials and their extension into the fermion sector. The vacuum structure of the scalar potential is analysed, including a study of the vacuum stability conditions on the potential and the renormalization-group improvement of these conditions is also presented. The stability of the tree level minimum of the scalar potential in connection with electric charge conservation and its behaviour under CP is analysed. The question of CP violation is addressed in detail, including the cases of explicit CP violation and spontaneous CP violation. We present a detailed study of weak basis invariants which are odd under CP. These invariants allow for the possibility of studying the CP properties of any two-Higgs-doublet model in an arbitrary Higgs basis. A careful study of spontaneous CP violation is presented, including an analysis of the conditions which have to be satisfied in order for a vacuum to violate CP. We present minimal models of CP violation where the vacuum phase is sufficient to generate a complex CKM matrix, which is at present a requirement for any realistic model of spontaneous CP violation.