994 resultados para ELECTROCATALYTIC PROPERTIES


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last years, extensive research has been devoted to develop novel materials and structures with high electrochemical performance for intermediate-temperatures solid-oxide fuel cells (IT-SOFCs) electrodes. In recent works, we have investigated the structural and electrochemical properties of La0:6Sr0:4CoO3 (LSCO) and La0:6Sr0:4Co1¡yFeyO3 (LSCFO) nanostructured cathodes, finding that they exhibit excellent electrocatalytic properties for the oxygen reduction reaction [1,2]. These materials were prepared by a pore-wetting technique using polycarbonate porous membranes as templates. Two average pore sizes were used: 200 nm and 800 nm. Our scanning electronic microscopy (SEM) study showed that the lower pore size yielded nanorods, while nanotubes were obtained with the bigger pore size. All the samples were calcined at 1000oC in order to produce materials with the desired perovskite-type crystal structure. In this work, we analyze the oxidation states of Co and Fe and the local atomic order of LSCO and LSCFO nanotubes and nanowires for various compositions. For this pur- pose we performed XANES and EXAFS studies on both Co and Fe K edges. These measurements were carried out at the D08B-XAFS2 beamline of the Brazilian Synchrotron Light Laboratory (LNLS). XANES spectroscopy showed that Co and Fe only change slightly their oxidation state upon Fe addition. Surprisingly, XANES results indicated that the content of oxygen vacancies is low, even though it is well-known that these materials are mixed ionic-electronic conductors. EXAFS results were consistent with those expected according to the rhombohedral crystal structure determined in previous X-ray powder dffraction investigations. [1] M.G. Bellino et al, J. Am. Chem. Soc. 129 (2007) 3066 [2] J.G. Sacanell et al., J. Power Sources 195 (2010) 1786

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, the correlation between the impregnation of proton exchange membrane fuel cell catalysts with perfluorosulfonate-ionomer (PFSI) and its electrochemical and electrocatalytic properties is investigated for different Pt loadings and carbon supports using a rotating-disk electrode (RDE) setup. We concentrate on its influence on the electrochemical surface area (ECSA) and the oxygen reduction reaction (ORR) activity. For this purpose, platinum (Pt) nanoparticles are prepared via a colloidal based preparation route and supported on three different carbon supports. Based on RDE experiments, we show that the ionomer has an influence both on the Pt utilization and the apparent kinetic current density of ORR. The experimental data reveal a strong interaction in the microstructure between the electrochemical properties and the surface properties of the carbon supports, metal loading and ionomer content. This study demonstrates that the colloidal synthesis approach offers interesting potential for systematic studies for the optimization of fuel cell catalysts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work carbon supported Pd nanoparticles were prepared and used as electrocatalysts for formic acid electrooxidation fuel cells. The influence of some relevant parameters such as the nominal Pt loading, the Nafion/total solids ratio as well as the Pd loading towards formic acid electrooxidation was evaluated using gold supported catalytic layer electrodes which were prepared using a similar methodology to that employed in the preparation of conventional catalyst coated membranes (CCM). The results obtained show that, for constant Pd loading, the nominal Pd loading and the Nafion percentage on the catalytic layer do not play an important role on the resulting electrocatalytic properties. The main parameter affecting the electrocatalytic activity of the electrodes seems to be the Pd loading, although the resulting activity is not directly proportional to the increased Pd loading. Thus, whereas the Pd loading is multiplied by a factor of 10, the activity is only twice which evidences an important decrease in the Pd utilization. In fact, the results obtained suggest the active layer is the outer one being clearly independent of the catalytic layer thickness. Finally, catalyst coated membranes with Pd catalyst loadings of 0.1, 0.5 and 1.2 mg cm-2 were also tested in a breathing direct formic acid fuel cell.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the treatment of wastewater from the textile industry, containing dyes as Yellow Novacron (YN), Red Remazol BR (RRB) and Blue Novacron CD (NB), and also, the treatment of wastewater from petrochemical industry (produced water) were investigated by anodic oxidation (OA) with platinum anodes supported on titanium (Ti/Pt) and boron-doped diamond (DDB). Definitely, one of the main parameters of this kind of treatment is the type of electrocatalytic material used, since the mechanisms and products of some anodic reactions depend on it. The OA of synthetic effluents containing with RRB, NB and YN were investigated in order to find the best conditions for the removal of color and organic content of the dye. According to the experimental results, the process of OA is suitable for decolorization of wastewaters containing these textile dyes due to electrocatalytic properties of DDB and Pt anodes. Removal of the organic load was more efficient at DDB, in all cases; where the dyes were degraded to aliphatic carboxylic acids at the end of the electrolysis. Energy requirements for the removal of color during OA of solutions of RRB, NB and YN depends mainly on the operating conditions, for example, RRB passes of 3.30 kWh m-3 at 20 mA cm-2 for 4.28 kWh m-3 at 60 mA cm-2 (pH = 1); 15.23 kWh m-3 at 20 mA cm-2 to 24.75 kWh m-3 at 60 mA cm-2 (pH 4.5); 10.80 kWh m-3 at 20 mA cm-2 to 31.5 kWh m-3 at 60 mA cm-2 (pH = 8) (estimated data for volume of treated effluent). On the other hand, in the study of OA of produced water effluent generated by petrochemical industry, galvanostatic electrolysis using DDB led to the complete removal of COD (98%), due to large amounts of hydroxyl radicals and peroxodisulphates generated from the oxidation of water and sulfates in solution, respectively. Thus, the rate of COD removal increases with increasing applied current density (15-60 mAcm-2 ). Moreover, at Pt electrode, approximately 50% removal of the organic load was achieved by applying from 15 to 30 mAcm-2 while 80% of COD removal was achieved for 60 mAcm-2 . Thus, the results obtained in the application of this technology were satisfactory depending on the electrocatalytic materials and operating conditions used for removal of organic load (petrochemical and textile effluents) as well as for the removal of color (in the case of textile effluents). Therefore, the applicability of electrochemical treatment can be considered as a new alternative like pretreatment or treatment of effluents derived from textiles and petrochemical industries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

.A novel electrochemical sensing platform was developed based on flower-like gold–zinc oxide core–shell nanoparticles and a graphene nanocomposite-modified glassy carbon electrode. The gold–zinc oxide core–shell nanoflowers were synthesized by seed growth and characterized by high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, and ultraviolet-visible absorption spectroscopy. The modified electrode provided good electrocatalytic properties, rapid response, high stability, and favorable reproducibility for determination of ascorbic acid. The performance of the sensor included a linear dynamic range from 1.0 × 10−7 to 6.0 × 10−4 M, a limit of detection of 3.9 × 10−8 M, and a sensitivity of 24.12 µA/mM. The nanocomposite also provided excellent selectivity and lower potential for the oxidation of ascorbic acid. The sensor was used for the determination of ascorbic acid in tablets with satisfactory results. This device provides rapid, simple, and selective determination of ascorbic acid.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two- and three-dimensional Au nanoparticle/[tetrakis(N-methylpyridyl)porphyrinato]cobalt (CoTMPyP) nanostructured materials were prepared by "bottom-up" self-assembly. The electrocatalytic and plasmonic properties of the Au nanoparticle/CoTMPyP self-assembled nanostructured materials (abbreviated as Au/CoTMPyP SANMs) are tunable by controlled self-assembly of the An nanoparticles and CoTMPyP on indium tin oxide (ITO) electrode. The electrocatalytic activity of the Au/CoTMPyP SANMs can be tuned in two ways. One way is that citrate-stabilized An nanoparticles are positioned first on ITO surface with tunable number density, and then positively charged CoTMPyP ions are planted selectively on these gold sites. The other way is that An nanoparticles and CoTMPyP are deposited by virtue of layer-by-layer assembly, which can also tune the amount of the as-deposited electrocatalysts. FE-SEM studies showed that three-dimensional SANMs grow in the lateral expansion mode, and thermal annealing resulted in both surface diffusion of nanoparticles and atomic rearrangement to generate larger gold nanostructures with predominant (I 11) facets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work describes the characterization of the [Mn2 IV,IVO2(terpy)2(H2O)2]4+ complex in aqueous solution by UV-vis spectrophotometry, cyclic voltammetry, and linear sweep voltammetry with a rotating disk electrode. The pH effect, potential scan rate, effect of perfluorosulfonate polymer, and anion of supporting electrode on the electrochemical behavior of the modified electrode for better performance were investigated. The potential peak of the modified electrode was linearly dependent upon the ratio [ionic charge]/[ionic radius]. The modified electrode exerted an electrocatalytic effect on dopamine oxidation in aqueous solution with a decrease in the overpotential compared with the unmodified glassy carbon electrode. This way, the modified electrode showed an enzymatic biomimicking behavior. Tafel plot analyses were used to elucidate the kinetics and mechanism of dopamine oxidation. © 2013 Springer Science+Business Media New York.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a simple electrochemical route to produce uniformly sized gold nanospikes without the need for a capping agent or prior modification of the electrode surface, which are predominantly oriented in the {111} crystal plane and exhibit promising electrocatalytic and SERS properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work a simple approach to the creation of highly dispersed electrocatalytically active silver microstructured dendrites on indium tin oxide in the absence of any surface modification or surfactant is presented. It is found that the addition of low concentrations of supporting electrolyte to the AgNO3 solution dramatically influences the morphology of electrodeposited silver which is independent of both the anion and the cation employed. The silver dendrites are characterized by SEM, XRD, XPS as well as by cyclic voltammetry under alkaline conditions. It is found that the surface oxide formation and removal processes are significantly influenced by the microstructured morphology of the silver electrodeposits compared to a smooth macrosized silver electrode. The facile formation of dendritic silver microstructures is also shown to be beneficial for the electrocatalytic oxidation of both formaldehyde and hydrazine and oxygen reduction. The formation of a continuous film of dendritic silver is also investigated for its SERS activity where the connectivity between the individual dendrites is found to be particularly important.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The controlled synthesis of nanostructured materials remains an ongoing area of research, especially as the size, shape and composition of nanomaterials can greatly influence their properties and applications. In this work we present the electrodeposition of highly dendritic platinum rich platinum-lead nanostructures, where lead acetate acts as an inorganic shape directing agent via underpotential deposition on the growing electrodeposit. It was found that these nanomaterials readily oxidise at potentials below monolayer oxide formation, which significantly impacts on the methanol electrooxidation reaction and correlates with the incipient hydrous oxide adatom mediator (IHOAM) model of electrocatalysis. Additionally these materials were tested for their surface enhanced Raman scattering (SERS) activity, where the high density of sharp tips provides promise for their application as SERS substrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three-dimensional (3D) macroporous Pt (MPPt) with highly open porous walls has been successfully synthesized using the hydrogen bubble dynamic template synthesis and galvanic replacement reaction. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and electrochemical methods were adopted to characterize their structures and properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fullerene/ionic-liquid composite was explored. Transmission Electron Microscopy (TEM) study showed that in the composite, C-60 mainly exists as nano-clusters, Raman spectrum proved that the composite formed only by physical Mix of C-60 and 1-Butyl-3-methyl-imidazolium hexafluorophosphate (BMIPF6), the combination did not change the chemical naturation of C-60. The electrochemical properties of the composite modified electrode, including the electrode reaction control function and the interfacial potential effect were studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A phosphopolyoxomolybdate (P2Mo18) doped polypyrrole (PPy) modified electrode was prepared in aqueous solution by a one-step method. During the polymerization of PPy, P2Mo18 acted as both catalyst and dopant. The electrochemical behavior of the PPy/P2Mo18 modified electrode before and after the overoxidation of PPy was investigated. Both of these showed a catalytic effect toward bromate. The PPy/P2Mo18 composite film was characterized by chronoamperometry, cyclic voltammetry, the rotating disk electrode technique, X-ray photoelectron spectroscopy and Raman spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rational synthesis and the structural and magnetic characterization of a nickel cluster are presented. The compound comprises a rhomblike Ni4O16 group encapsulated between two-heptadentate tungstoarsenate ligands [AsW9O34](9-). The crystal structure of K-10[Ni-4(H2O)(2)(AsW9O34)(2)](.)4H(2)O was solved in monoclinic, P2(1)/n symmetry, with a = 12.258(3) Angstrom, b = 21.232(4) Angstrom, c = 15.837(3) Angstrom, beta = 92.05(3)degrees, V = 4119.1(14) Angstrom(3), Z = 2, and R = 0.0862. The crystal structure of the Ni(II) derivative was compared with that of the Cu(II), Zn(II), Co(II) and Mn(II) derivatives. The Ni4O14(H2O)(2) unit in the compound shows no Jahn-Teller distortion. On the other hand, the Ni(II) derivative shows ferromagnetic exchange interactions within the Ni4O16 group (J = 7.8 cm(-1), J' = 13.7 cm(-1)) and an S = 4 ground state, the highest spin state reported in a heteropoly complex. Its redox electrochemistry has been studied in acid buffer solutions using cyclic voltammetry. It exhibited two steps of one-electron redox waves attributed to redox processes of the tungsten-oxo framework. The new catalyst showed an electrocatalytic effect on the reduction of NO2-.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochemical polymerized polyaniline(PAn) film electrode was used to investigate the electrocatalytic effect of PAn on the electrochemical redox reaction of 2,5-dimercapto-1,3,4-thiadiazole (DMcT), PAn film electrode was electrochemically treated or immersed in DMcT solution before it was scanned in 1.0 mol/L HCl electrolyte. The cyclic voltammograms of PAn film electrode in 1.0 mol/L HCl solution changed with the above treatment, implying the electrocatalytic effect of PAn on the redox reaction of DMcT, The formation of electron-donor-acceptor adducts through the interaction between thiol or disulfide groups of DMcT and amine or imine groups of PAn during the treatment was probably the reason of the catalysis, The electrochemical properties of the adduct were different from those of PAn and DMcT, The adduct possessed a higher electrochemical activity and a better electrochemical reversibility than DMcT or PAn used alone.