982 resultados para Dynamic Asset Allocation
Resumo:
A narrow review on mutual fund performance evaluation methods.
Resumo:
One of the main developments in the global economy during the past decades has been the growth of emerging economies. Projections for their long-term growth, changes in the investment climate, corporate transparency and demography point to an increasing role for these emerging economies in the global economy. Today, emerging economies are usually considered as financial markets offering opportunities for high returns, good risk diversification and improved return-to-risk ratios. However, researchers have noted that these advantages may be in decline because of the increasing market integration. Nevertheless, it is likely that certain financial markets and specific sectors will remain partially segmented and somewhat insulated from the global economy for the year to come. This doctoral dissertation investigates several stock markets in Emerging Eastern Europe (EEE), including the ones in Russia, Poland, Hungary, the Czech Republic, Bulgaria and Slovenia. The objective is to analyze the returns and financial risks in these emerging markets from international investor’s point of view. This study also examines the segmentation/integration of these financial markets and the possibilities to diversify and hedge financial risk. The dissertation is divided into two parts. The first includes a review of the theoretical background for the articles and a review of the literature on EEE stock markets. It includes an overview of the methodology and research design applied in the analysis and a summary of articles from the second part of this dissertation and their main findings. The second part consists of four research publications. This work contributes to studies on emerging stock markets in four ways. First, it adds to the body of research on the pricing of risk, providing new empirical evidence about partial stock market segmentation in EEE. The results suggest that the aggregate emerging market risk is a relevant driver for stock market returns and that this market risk can be used to price financial instruments and forecast their performance. Second, it contributes to the empirical research on the integration of stock markets, asset prices and exchange rates by identifying the relationships between these markets through volatility and asset pricing. The results show that certain sectors of stock markets in EEE are not as integrated as others. For example, the Polish consumer goods sector, the Hungarian telecommunications sector, and the Czech financial sector are somewhat isolated from their counterparts elsewhere in Europe. Nevertheless, an analysis of the impact of EU accession in 2004 on stock markets suggests that most of the EEE markets are becoming increasingly integrated with the global markets. Third, this thesis complements the scientific literature in the field of shock and volatility spillovers by examining the mechanism of spillover distribution among the EU and EEE countries. The results illustrate that spillovers in emerging markets are mostly from a foreign exchange to the stock markets. Moreover, the results show that the effects of external shocks on stock markets have increased after the enlargement of the EU in 2004. Finally, this study is unique because it analyzes the effects of foreign macroeconomic news on geographically closely related countries. The results suggest that the effects of macroeconomic announcements on volatility are significant and have effect that varies across markets and their sectors. Moreover, the results show that the foreign macroeconomic news releases, somewhat surprisingly, have a greater effect on the EEE markets than the local macroeconomic news. This dissertation has a number of implications for the industry and for practitioners. It analyses financial risk associated with investing in Emerging Eastern Europe. Investors may use this information to construct and optimize investment portfolios. Moreover, this dissertation provides insights for investors and portfolio managers considering asset allocation to protect value or obtain higher returns. The results have also implications for asset pricing and portfolio selection in light of macroeconomic news releases.
Resumo:
Finanssi-instrumentin hinta määräytyy sen fundamenttitekijöiden perusteella, eikä päinvastoin. Tämä tutkimus osoittaa, että myös instrumentin hinta voi vaikuttaa fundamenttitekijöihin. Yhteys havainnollistetaan tapaustukimuksella Kreikan velkakriisistä. Hinnan ja fundamenttien välistä yhteyttä arvioidaan ja käänteisen kausaliteetin olemassaolo testataan. Tulokset tukevat ajatusta, jonka mukaan tarvitsemme dynaamisempia valuaatiomenetelmiä, jotka ottavat huomioon myös mahdolliset itseään vahvistavat hintakierteet.
Resumo:
Latent variable models in finance originate both from asset pricing theory and time series analysis. These two strands of literature appeal to two different concepts of latent structures, which are both useful to reduce the dimension of a statistical model specified for a multivariate time series of asset prices. In the CAPM or APT beta pricing models, the dimension reduction is cross-sectional in nature, while in time-series state-space models, dimension is reduced longitudinally by assuming conditional independence between consecutive returns, given a small number of state variables. In this paper, we use the concept of Stochastic Discount Factor (SDF) or pricing kernel as a unifying principle to integrate these two concepts of latent variables. Beta pricing relations amount to characterize the factors as a basis of a vectorial space for the SDF. The coefficients of the SDF with respect to the factors are specified as deterministic functions of some state variables which summarize their dynamics. In beta pricing models, it is often said that only the factorial risk is compensated since the remaining idiosyncratic risk is diversifiable. Implicitly, this argument can be interpreted as a conditional cross-sectional factor structure, that is, a conditional independence between contemporaneous returns of a large number of assets, given a small number of factors, like in standard Factor Analysis. We provide this unifying analysis in the context of conditional equilibrium beta pricing as well as asset pricing with stochastic volatility, stochastic interest rates and other state variables. We address the general issue of econometric specifications of dynamic asset pricing models, which cover the modern literature on conditionally heteroskedastic factor models as well as equilibrium-based asset pricing models with an intertemporal specification of preferences and market fundamentals. We interpret various instantaneous causality relationships between state variables and market fundamentals as leverage effects and discuss their central role relative to the validity of standard CAPM-like stock pricing and preference-free option pricing.
Resumo:
In this paper, we characterize the asymmetries of the smile through multiple leverage effects in a stochastic dynamic asset pricing framework. The dependence between price movements and future volatility is introduced through a set of latent state variables. These latent variables can capture not only the volatility risk and the interest rate risk which potentially affect option prices, but also any kind of correlation risk and jump risk. The standard financial leverage effect is produced by a cross-correlation effect between the state variables which enter into the stochastic volatility process of the stock price and the stock price process itself. However, we provide a more general framework where asymmetric implied volatility curves result from any source of instantaneous correlation between the state variables and either the return on the stock or the stochastic discount factor. In order to draw the shapes of the implied volatility curves generated by a model with latent variables, we specify an equilibrium-based stochastic discount factor with time non-separable preferences. When we calibrate this model to empirically reasonable values of the parameters, we are able to reproduce the various types of implied volatility curves inferred from option market data.
Resumo:
Cette thèse de doctorat consiste en trois chapitres qui traitent des sujets de choix de portefeuilles de grande taille, et de mesure de risque. Le premier chapitre traite du problème d’erreur d’estimation dans les portefeuilles de grande taille, et utilise le cadre d'analyse moyenne-variance. Le second chapitre explore l'importance du risque de devise pour les portefeuilles d'actifs domestiques, et étudie les liens entre la stabilité des poids de portefeuille de grande taille et le risque de devise. Pour finir, sous l'hypothèse que le preneur de décision est pessimiste, le troisième chapitre dérive la prime de risque, une mesure du pessimisme, et propose une méthodologie pour estimer les mesures dérivées. Le premier chapitre améliore le choix optimal de portefeuille dans le cadre du principe moyenne-variance de Markowitz (1952). Ceci est motivé par les résultats très décevants obtenus, lorsque la moyenne et la variance sont remplacées par leurs estimations empiriques. Ce problème est amplifié lorsque le nombre d’actifs est grand et que la matrice de covariance empirique est singulière ou presque singulière. Dans ce chapitre, nous examinons quatre techniques de régularisation pour stabiliser l’inverse de la matrice de covariance: le ridge, spectral cut-off, Landweber-Fridman et LARS Lasso. Ces méthodes font chacune intervenir un paramètre d’ajustement, qui doit être sélectionné. La contribution principale de cette partie, est de dériver une méthode basée uniquement sur les données pour sélectionner le paramètre de régularisation de manière optimale, i.e. pour minimiser la perte espérée d’utilité. Précisément, un critère de validation croisée qui prend une même forme pour les quatre méthodes de régularisation est dérivé. Les règles régularisées obtenues sont alors comparées à la règle utilisant directement les données et à la stratégie naïve 1/N, selon leur perte espérée d’utilité et leur ratio de Sharpe. Ces performances sont mesurée dans l’échantillon (in-sample) et hors-échantillon (out-of-sample) en considérant différentes tailles d’échantillon et nombre d’actifs. Des simulations et de l’illustration empirique menées, il ressort principalement que la régularisation de la matrice de covariance améliore de manière significative la règle de Markowitz basée sur les données, et donne de meilleurs résultats que le portefeuille naïf, surtout dans les cas le problème d’erreur d’estimation est très sévère. Dans le second chapitre, nous investiguons dans quelle mesure, les portefeuilles optimaux et stables d'actifs domestiques, peuvent réduire ou éliminer le risque de devise. Pour cela nous utilisons des rendements mensuelles de 48 industries américaines, au cours de la période 1976-2008. Pour résoudre les problèmes d'instabilité inhérents aux portefeuilles de grandes tailles, nous adoptons la méthode de régularisation spectral cut-off. Ceci aboutit à une famille de portefeuilles optimaux et stables, en permettant aux investisseurs de choisir différents pourcentages des composantes principales (ou dégrées de stabilité). Nos tests empiriques sont basés sur un modèle International d'évaluation d'actifs financiers (IAPM). Dans ce modèle, le risque de devise est décomposé en deux facteurs représentant les devises des pays industrialisés d'une part, et celles des pays émergents d'autres part. Nos résultats indiquent que le risque de devise est primé et varie à travers le temps pour les portefeuilles stables de risque minimum. De plus ces stratégies conduisent à une réduction significative de l'exposition au risque de change, tandis que la contribution de la prime risque de change reste en moyenne inchangée. Les poids de portefeuille optimaux sont une alternative aux poids de capitalisation boursière. Par conséquent ce chapitre complète la littérature selon laquelle la prime de risque est importante au niveau de l'industrie et au niveau national dans la plupart des pays. Dans le dernier chapitre, nous dérivons une mesure de la prime de risque pour des préférences dépendent du rang et proposons une mesure du degré de pessimisme, étant donné une fonction de distorsion. Les mesures introduites généralisent la mesure de prime de risque dérivée dans le cadre de la théorie de l'utilité espérée, qui est fréquemment violée aussi bien dans des situations expérimentales que dans des situations réelles. Dans la grande famille des préférences considérées, une attention particulière est accordée à la CVaR (valeur à risque conditionnelle). Cette dernière mesure de risque est de plus en plus utilisée pour la construction de portefeuilles et est préconisée pour compléter la VaR (valeur à risque) utilisée depuis 1996 par le comité de Bâle. De plus, nous fournissons le cadre statistique nécessaire pour faire de l’inférence sur les mesures proposées. Pour finir, les propriétés des estimateurs proposés sont évaluées à travers une étude Monte-Carlo, et une illustration empirique en utilisant les rendements journaliers du marché boursier américain sur de la période 2000-2011.
El sistema multifondos de pensiones colombiano bajo las nuevas teorías del comportamiento financiero
Resumo:
En Colombia, después de casi dos décadas de la creación del régimen de cuentas privadas, se implementó una reforma donde se pasa de un sistema con un unico fondo a uno multifondos. Este tipo de reformas se vienen implementando en diferentes paises europeos y de Latino America. A la luz de las teorías clásicas dicha reforma trae mejoras en el bienestar de los individuos; sin embargo, la literatura sobre las nuevas teorías del comportamiento sugiere que los individuos no siempre toman decisiones que están de acuerdo con los supuestos de las teorías clásicas. Este trabajo estudia esta reforma en Colombia bajo algunas de las teorías del comportamiento financiero. Se encuentra que aún cuando el afiliado se quede en la opción default , o actúe con aversión a la pérdida, va a obtener valores en sus cuentas privadas mayores a las que obtendría con un sistema de un único fondo.
El sistema multifondos de pensiones colombiano bajo las nuevas teorías del comportamiento financiero
Resumo:
En Colombia, después de casi dos décadas de la creación del régimen de cuentas privadas, se implementó una reforma donde se pasa de un sistema con un único fondo a uno multifondos. Este tipo de reformas se vienen implementando en diferentes países europeos y de Latino América. A la luz de las teorías clásicas dicha reforma trae mejoras en el bienestar de los individuos; sin embargo, la literatura sobre las nuevas teorías del comportamiento sugiere que los individuos no siempre toman decisiones que están de acuerdo con los supuestos de las teorías clásicas. Este trabajo estudia esta reforma en Colombia bajo algunas de las teorías del comportamiento financiero. Se encuentra que aún cuando el afiliado se quede en la opción default , o actúe con aversión a la pérdida, va a obtener valores en sus cuentas privadas mayores a las que obtendría con un sistema de un único fondo.
Resumo:
En este documento se explica el rol de las compañías aseguradoras colombianas dentro del sistema pensional y se busca, a través de la comprensión de la evolución del entorno macroeconómico y del marco regulatorio, identificar los retos que enfrentan. Los retos explicados en el documento son tres: el reto de la rentabilidad, el reto que plantean los cambios relativamente frecuentes de la regulación, y el reto del “calce”. El documento se enfoca principalmente en el reto de la rentabilidad y desarrolla un ejercicio de frontera eficiente que utiliza retornos esperados calculados a partir de la metodología de Damodaran (2012). Los resultados del ejercicio soportan la idea de que en efecto los retornos esperados serán menores para cualquier nivel de riesgo y sugiere que ante tal panorama, la relajación de las restricciones impuestas por el Régimen de inversiones podría alivianar los preocupaciones de las compañías aseguradoras en esta materia. Para los otros dos retos también se sugieren alternativas: el Algorithmic Trading para el caso del reto que impone los cambios en la regulación, y las Asociaciones Público-Privadas para abordar el reto del “calce”.
Resumo:
Los resultados financieros de las organizaciones son objeto de estudio y análisis permanente, predecir sus comportamientos es una tarea permanente de empresarios, inversionistas, analistas y académicos. En el presente trabajo se explora el impacto del tamaño de los activos (valor total de los activos) en la cuenta de resultados operativos y netos, analizando inicialmente la relación entre dichas variables con indicadores tradicionales del análisis financiero como es el caso de la rentabilidad operativa y neta y con elementos de estadística descriptiva que permiten calificar los datos utilizados como lineales o no lineales. Descubriendo posteriormente que los resultados financieros de las empresas vigiladas por la Superintendencia de Sociedades para el año 2012, tienen un comportamiento no lineal, de esta manera se procede a analizar la relación de los activos y los resultados con la utilización de espacios de fase y análisis de recurrencia, herramientas útiles para sistemas caóticos y complejos. Para el desarrollo de la investigación y la revisión de la relación entre las variables de activos y resultados financieros se tomó como fuente de información los reportes financieros del cierre del año 2012 de la Superintendencia de Sociedades (Superintendencia de Sociedades, 2012).
Resumo:
En este trabajo se implementa una metodología para incluir momentos de orden superior en la selección de portafolios, haciendo uso de la Distribución Hiperbólica Generalizada, para posteriormente hacer un análisis comparativo frente al modelo de Markowitz.
Resumo:
Depreciation is a key element of understanding the returns from and price of commercial real estate. Understanding its impact is important for asset allocation models and asset management decisions. It is a key input into well-constructed pricing models and its impact on indices of commercial real estate prices needs to be recognised. There have been a number of previous studies of the impact of depreciation on real estate, particularly in the UK. Law (2004) analysed all of these studies and found that the seemingly consistent results were an illusion as they all used a variety of measurement methods and data. In addition, none of these studies examined impact on total returns; they examined either rental value depreciation alone or rental and capital value depreciation. This study seeks to rectify this omission, adopting the best practice measurement framework set out by Law (2004). Using individual property data from the UK Investment Property Databank for the 10-year period between 1994 and 2003, rental and capital depreciation, capital expenditure rates, and total return series for the data sample and for a benchmark are calculated for 10 market segments. The results are complicated by the period of analysis which started in the aftermath of the major UK real estate recession of the early 1990s, but they give important insights into the impact of depreciation in different segments of the UK real estate investment market.
Resumo:
Decision theory is the study of models of judgement involved in, and leading to, deliberate and (usually) rational choice. In real estate investment there are normative models for the allocation of assets. These asset allocation models suggest an optimum allocation between the respective asset classes based on the investors’ judgements of performance and risk. Real estate is selected, as other assets, on the basis of some criteria, e.g. commonly its marginal contribution to the production of a mean variance efficient multi asset portfolio, subject to the investor’s objectives and capital rationing constraints. However, decisions are made relative to current expectations and current business constraints. Whilst a decision maker may believe in the required optimum exposure levels as dictated by an asset allocation model, the final decision may/will be influenced by factors outside the parameters of the mathematical model. This paper discusses investors' perceptions and attitudes toward real estate and highlights the important difference between theoretical exposure levels and pragmatic business considerations. It develops a model to identify “soft” parameters in decision making which will influence the optimal allocation for that asset class. This “soft” information may relate to behavioural issues such as the tendency to mirror competitors; a desire to meet weight of money objectives; a desire to retain the status quo and many other non-financial considerations. The paper aims to establish the place of property in multi asset portfolios in the UK and examine the asset allocation process in practice, with a view to understanding the decision making process and to look at investors’ perceptions based on an historic analysis of market expectation; a comparison with historic data and an analysis of actual performance.
Resumo:
Whilst the vast majority of the research on property market forecasting has concentrated on statistical methods of forecasting future rents, this report investigates the process of property market forecast production with particular reference to the level and effect of judgemental intervention in this process. Expectations of future investment performance at the levels of individual asset, sector, region, country and asset class are crucial to stock selection and tactical and strategic asset allocation decisions. Given their centrality to investment performance, we focus on the process by which forecasts of rents and yields are generated and expectations formed. A review of the wider literature on forecasting suggests that there are strong grounds to expect that forecast outcomes are not the result of purely mechanical calculations.
Resumo:
Modern Portfolio Theory (MPT) has been advocated as a more rational approach to the construction of real estate portfolios. The application of MPT can now be achieved with relative ease using the powerful facilities of modern spreadsheet, and does not necessarily need specialist software. This capability is to be found in the use of an add-in Tool now found in several spreadsheets, called an Optimiser or Solver. The value in using this kind of more sophisticated analysis feature of spreadsheets is increasingly difficult to ignore. This paper examines the use of the spreadsheet Optimiser in handling asset allocation problems. Using the Markowitz Mean-Variance approach, the paper introduces the necessary calculations, and shows, by means of an elementary example implemented in Microsoft's Excel, how the Optimiser may be used. Emphasis is placed on understanding the inputs and outputs from the portfolio optimisation process, and the danger of treating the Optimiser as a Black Box is discussed.