929 resultados para Distributed lag non-linear model
Resumo:
An analytical model of orographic gravity wave drag due to sheared flow past elliptical mountains is developed. The model extends the domain of applicability of the well-known Phillips model to wind profiles that vary relatively slowly in the vertical, so that they may be treated using a WKB approximation. The model illustrates how linear processes associated with wind profile shear and curvature affect the drag force exerted by the airflow on mountains, and how it is crucial to extend the WKB approximation to second order in the small perturbation parameter for these effects to be taken into account. For the simplest wind profiles, the normalized drag depends only on the Richardson number, Ri, of the flow at the surface and on the aspect ratio, γ, of the mountain. For a linear wind profile, the drag decreases as Ri decreases, and this variation is faster when the wind is across the mountain than when it is along the mountain. For a wind that rotates with height maintaining its magnitude, the drag generally increases as Ri decreases, by an amount depending on γ and on the incidence angle. The results from WKB theory are compared with exact linear results and also with results from a non-hydrostatic nonlinear numerical model, showing in general encouraging agreement, down to values of Ri of order one.
Resumo:
In this paper we discuss the current state-of-the-art in estimating, evaluating, and selecting among non-linear forecasting models for economic and financial time series. We review theoretical and empirical issues, including predictive density, interval and point evaluation and model selection, loss functions, data-mining, and aggregation. In addition, we argue that although the evidence in favor of constructing forecasts using non-linear models is rather sparse, there is reason to be optimistic. However, much remains to be done. Finally, we outline a variety of topics for future research, and discuss a number of areas which have received considerable attention in the recent literature, but where many questions remain.
Resumo:
This paper forecasts Daily Sterling exchange rate returns using various naive, linear and non-linear univariate time-series models. The accuracy of the forecasts is evaluated using mean squared error and sign prediction criteria. These show only a very modest improvement over forecasts generated by a random walk model. The Pesaran–Timmerman test and a comparison with forecasts generated artificially shows that even the best models have no evidence of market timing ability.
Resumo:
This paper proposes a novel adaptive multiple modelling algorithm for non-linear and non-stationary systems. This simple modelling paradigm comprises K candidate sub-models which are all linear. With data available in an online fashion, the performance of all candidate sub-models are monitored based on the most recent data window, and M best sub-models are selected from the K candidates. The weight coefficients of the selected sub-model are adapted via the recursive least square (RLS) algorithm, while the coefficients of the remaining sub-models are unchanged. These M model predictions are then optimally combined to produce the multi-model output. We propose to minimise the mean square error based on a recent data window, and apply the sum to one constraint to the combination parameters, leading to a closed-form solution, so that maximal computational efficiency can be achieved. In addition, at each time step, the model prediction is chosen from either the resultant multiple model or the best sub-model, whichever is the best. Simulation results are given in comparison with some typical alternatives, including the linear RLS algorithm and a number of online non-linear approaches, in terms of modelling performance and time consumption.
Resumo:
We study the optimal “inflation tax” in an environment with heterogeneous agents and non-linear income taxes. We first derive the general conditions needed for the optimality of the Friedman rule in this setup. These general conditions are distinct in nature and more easily interpretable than those obtained in the literature with a representative agent and linear taxation. We then study two standard monetary specifications and derive their implications for the optimality of the Friedman rule. For the shopping-time model the Friedman rule is optimal with essentially no restrictions on preferences or transaction technologies. For the cash-credit model the Friedman rule is optimal if preferences are separable between the consumption goods and leisure, or if leisure shifts consumption towards the credit good. We also study a generalized model which nests both models as special cases.
Resumo:
Introduction. Leaf area is often related to plant growth, development, physiology and yield. Many non-destructive models have been proposed for leaf area estimation of several plant genotypes, demonstrating that leaf length, leaf width and leaf area are closely correlated. Thus, the objective of our study was to develop a reliable model for leaf area estimation from linear measurements of leaf dimensions for citrus genotypes. Materials and methods. Leaves of citrus genotypes were harvested, and their dimensions (length, width and area) were measured. Values of leaf area were regressed against length, width, the square of length, the square of width and the product (length x width). The most accurate equations, either linear or second-order polynomial, were regressed again with a new data set; then the most reliable equation was defined. Results and discussion. The first analysis showed that the variables length, width and the square of length gave better results in second-order polynomial equations, while the linear equations were more suitable and accurate when the width and the product (length x width) were used. When these equations were regressed with the new data set, the coefficient of determination (R(2)) and the agreement index 'd' were higher for the one that used the variable product (length x width), while the Mean Absolute Percentage Error was lower. Conclusion. The product of the simple leaf dimensions (length x width) can provide a reliable and simple non-destructive model for leaf area estimation across citrus genotypes.
Resumo:
The objectives of this study were to compare the goodness of fit of four non-linear growth models, i.e. Brody, Gompertz, Logistic and Von Bertalanffy, in West African Dwarf (WAD) sheep. A total of 5274 monthly weight records from birth up to 180 days of age from 889 lambs, collected during 2001 to 2004 in Betecoucou breeding farm in Benin were used. In the preliminary analysis, the General Linear Model Procedure of the Statistical Analysis Systems Institute was applied to the dataset to identify the significant effects of the sex of lamb (male and female), type of birth (single and twin), season of birth (rainy season and dry season), parity of dam (1, 2 and 3) and year of birth (2001, 2002, 2003 and 2004) on the observed birth weight and monthly weight up to 6 months of age. The models parameters (A, B and k), coefficient of determination (112), mean square error (MSE) were calculated using language of technical computing package Matlab(R), 2006. The mean values of A, B and k were substituted into each model to calculate the corresponding Akaike's Information Criterion (AIC). Among the four growth functions, the Brody model has been selected for its accuracy of fit according to the higher R(2), lower MSE and A/C Finally, the parameters A, B and k were adjusted in Matlab(R) 2006 for the sex of lamb, year of birth, season of birth, birth type and the parity of ewe, providing a specific slope of the Brody growth curve. The results of this study suggest that Brody model can be useful for WAD sheep breeding in Betecoucou farm conditions through growth monitoring.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Fitzhugh-Nagumo (fn) mathematical model characterizes the action potential of the membrane. The dynamics of the Fitzhugh-Nagumo model have been extensively studied both with a view to their biological implications and as a test bed for numerical methods, which can be applied to more complex models. This paper deals with the dynamics in the (FH) model. Here, the dynamics are analyzed, qualitatively, through the stability diagrams to the action potential of the membrane. Furthermore, we also analyze quantitatively the problem through the evaluation of Floquet multipliers. Finally, the nonlinear periodic problem is controlled, based on the Chebyshev polynomial expansion, the Picard iterative method and on Lyapunov-Floquet transformation (L-F transformation).
Resumo:
In this work, a numerical model to perform non-linear analysis of building floor structures is proposed. The presented model is derived from the Kirchhoff-s plate bending formulation of the boundary element method (BENI) for zoned domains, in which the plate stiffness is modified by the presence of membrane effects. In this model, no approximation of the generalized forces along the interface is required and the compatibility and equilibrium conditions along interfaces are imposed at the integral equation level. In order to reduce the number of degrees of freedom, the Navier Bernoulli hypothesis is assumed to simplify the strain field for the thin sub-regions (rectangular beams). The non-linear formulation is obtained from the linear formulation by incorporating initial internal force fields, which are approximated by using the well-known cell sub-division. Then, the non-linear solution of algebraic equations is obtained by using the concept of the consistent tangent operator. The Von Mises criterion is adopted to govern the elasto-plastic material behaviour checked at points along the plate thickness and along the rectangular beam element axes. The numerical representations are accurately obtained by either computing analytically the element integrals or performing the numerical integration accurately using an appropriate sub-elementation scheme. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Invariance under non-linear Ŵ∞ algebra is shown for the two-boson Liouville type of model and its algebraic generalizations, the extended conformal Toda models. The realization of the corresponding generators in terms of two boson currents within KP hierarchy is presented.
Resumo:
We apply the Bogoliubov Averaging Method to the study of the vibrations of an elastic foundation, forced by a Non-ideal energy source. The considered model consists of a portal plane frame with quadratic nonlinearities, with internal resonance 1:2, supporting a direct current motor with limited power. The non-ideal excitation is in primary resonance in the order of one-half with the second mode frequency. The results of the averaging method, plotted in time evolution curve and phase diagrams are compared to those obtained by numerically integrating of the original differential equations. The presence of the saturation phenomenon is verified by analytical procedures.
Resumo:
In this paper we present a set of generic results on Hamiltonian non-linear dynamics. We show the necessary conditions for a Hamiltonian system to present a non-twist scenario and from that we introduce the isochronous resonances. The generality of these resonances is shown from the Hamiltonian given by the Birkhof-Gustavson normal form, which can be considered a toy model, and from an optic system governed by the non-linear map of the annular billiard. We also define a special kind of transport barrier called robust torus. The meanders and shearless curves are also presented and we show the most robust shearless barrier associated with the rotation numbers.