820 resultados para Discrete time control systems
Resumo:
Closing feedback loops using an IEEE 802.11b ad hoc wireless communication network incurs many challenges sensitivity to varying channel conditions and lower physical transmission rates tend to limit the bandwidth of the communication channel. Given that the bandwidth usage and control performance are linked, a method of adapting the sampling interval based on an 'a priori', static sampling policy has been proposed and, more significantly, assuring stability in the mean square sense using discrete-time Markov jump linear system theory. Practical issues including current limitations of the 802.11 b protocol, the sampling policy and stability are highlighted. Simulation results on a cart-mounted inverted pendulum show that closed-loop stability can be improved using sample rate adaptation and that the control design criteria can be met in the presence of channel errors and severe channel contention.
Resumo:
We develop an extension to the tactical planning model (TPM) for a job shop by the third author. The TPM is a discrete-time model in which all transitions occur at the start of each time period. The time period must be defined appropriately in order for the model to be meaningful. Each period must be short enough so that a job is unlikely to travel through more than one station in one period. At the same time, the time period needs to be long enough to justify the assumptions of continuous workflow and Markovian job movements. We build an extension to the TPM that overcomes this restriction of period sizing by permitting production control over shorter time intervals. We achieve this by deriving a continuous-time linear control rule for a single station. We then determine the first two moments of the production level and queue length for the workstation.
Resumo:
This paper discusses the use of multi-layer perceptron networks for linear or linearizable, adaptive feedback.control schemes in a discrete-time environment. A close look is taken at the model structure selected and the extent of the resulting parametrization. A comparison is made with standard, non-perceptron algorithms, e.g. self-tuning control, and it is shown how gross over-parametrization can occur in the neural network case. Because of the resultant heavy computational burden and poor controller convergence, a strong case is made against the use of neural networks for discrete-time linear control.
Resumo:
A computer-based sliding mode control (SMC) is analysed. The control law is accomplished using a computer and A/D and D/A converters. Two SMC designs are presented. The first one is a continuous-time conventional SMC design, with a variable structure law, which does not take into consideration the sampling period. The second one is a discrete-time SMC design, with a smooth sliding law, which does not have a structure variable and takes into consideration the sampling period. Both techniques are applied to control an inverted pendulum system. The performance of both the continuous-time and discrete-time controllers are compared. Simulations and experimental results are shown and the effectiveness of the proposed techniques is analysed.
Resumo:
We consider an infinite horizon optimal impulsive control problems for which a given cost function is minimized by choosing control strategies driving the state to a point in a given closed set C ∞. We present necessary conditions of optimality in the form of a maximum principle for which the boundary condition of the adjoint variable is such that non-degeneracy due to the fact that the time horizon is infinite is ensured. These conditions are given for conventional systems in a first instance and then for impulsive control problems. They are proved by considering a family of approximating auxiliary interval conventional (without impulses) optimal control problems defined on an increasing sequence of finite time intervals. As far as we know, results of this kind have not been derived previously. © 2010 IFAC.
Resumo:
This paper proposes a new switched control design method for some classes of linear time-invariant systems with polytopic uncertainties. This method uses a quadratic Lyapunov function to design the feedback controller gains based on linear matrix inequalities (LMIs). The controller gain is chosen by a switching law that returns the smallest value of the time derivative of the Lyapunov function. The proposed methodology offers less conservative alternative than the well-known controller for uncertain systems with only one state feedback gain. The control design of a magnetic levitator illustrates the procedure. © 2013 Wallysonn A. de Souza et al.
Resumo:
Structural damage identification is basically a nonlinear phenomenon; however, nonlinear procedures are not used currently in practical applications due to the complexity and difficulty for implementation of such techniques. Therefore, the development of techniques that consider the nonlinear behavior of structures for damage detection is a research of major importance since nonlinear dynamical effects can be erroneously treated as damage in the structure by classical metrics. This paper proposes the discrete-time Volterra series for modeling the nonlinear convolution between the input and output signals in a benchmark nonlinear system. The prediction error of the model in an unknown structural condition is compared with the values of the reference structure in healthy condition for evaluating the method of damage detection. Since the Volterra series separate the response of the system in linear and nonlinear contributions, these indexes are used to show the importance of considering the nonlinear behavior of the structure. The paper concludes pointing out the main advantages and drawbacks of this damage detection methodology. © (2013) Trans Tech Publications.
Resumo:
This paper is concerned with the controllability and stabilizability problem for control systems described by a time-varyinglinear abstract differential equation with distributed delay in the state variables. An approximate controllability propertyis established, and for periodic systems, the stabilization problem is studied. Assuming that the semigroup of operatorsassociated with the uncontrolled and non delayed equation is compact, and using the characterization of the asymptoticstability in terms of the spectrum of the monodromy operator of the uncontrolled system, it is shown that the approximatecontrollability property is a sufficient condition for the existence of a periodic feedback control law that stabilizes thesystem. The result is extended to include some systems which are asymptotically periodic. Copyright © 2014 John Wiley &Sons, Ltd.
Resumo:
This work addresses the solution to the problem of robust model predictive control (MPC) of systems with model uncertainty. The case of zone control of multi-variable stable systems with multiple time delays is considered. The usual approach of dealing with this kind of problem is through the inclusion of non-linear cost constraint in the control problem. The control action is then obtained at each sampling time as the solution to a non-linear programming (NLP) problem that for high-order systems can be computationally expensive. Here, the robust MPC problem is formulated as a linear matrix inequality problem that can be solved in real time with a fraction of the computer effort. The proposed approach is compared with the conventional robust MPC and tested through the simulation of a reactor system of the process industry.
Resumo:
Management Control System (MCS) research is undergoing turbulent times. For a long time related to cybernetic instruments of management accounting only, MCS are increasingly seen as complex systems comprising not only formal accounting-driven instruments, but also informal mechanisms of control based on organizational culture. But not only have the means of MCS changed; researchers increasingly ap-ply MCS to organizational goals other than strategy implementation.rnrnTaking the question of "How do I design a well-performing MCS?" as a starting point, this dissertation aims at providing a comprehensive and integrated overview of the "current-state" of MCS research. Opting for a definition of MCS, broad in terms of means (all formal as well as informal MCS instruments), but focused in terms of objectives (behavioral control only), the dissertation contributes to MCS theory by, a) developing an integrated (contingency) model of MCS, describing its contingencies, as well as its subcomponents, b) refining the equifinality model of Gresov/Drazin (1997), c) synthesizing research findings from contingency and configuration research concerning MCS, taking into account case studies on research topics such as ambi-dexterity, equifinality and time as a contingency.
Resumo:
Im folgenden Beitrag werden zeitdiskrete analytische Methoden vorgestellt, mit Hilfe derer Informations- und Materialflüsse in logistischen Systemen analysiert und bewertet werden können. Bestehende zeitdiskrete Verfahren sind jedoch auf die Bearbeitung und Weitergabe in immer gleichen Mengen („One Piece Flow“) beschränkt. Vor allem in Materialflusssystemen kommt es, bedingt durch die Zusammenfassung von Aufträgen, durch Transporte und durch Sortiervorgänge, zur Bildung von Batches. Daher wurden analytische Methoden entwickelt, die es ermöglichen, verschiedene Sammelprozesse, Batchankünfte an Ressourcen, Batchbearbeitung und Sortieren von Batches analytisch abzubilden und Leistungskenngrößen zu deren Bewertung zu bestimmen. Die im Rahmen der Entwicklungsarbeiten entstandene Software-Lösung „Logistic Analyzer“ ermöglicht eine einfache Modellierung und Analyse von praktischen Problemen. Der Beitrag schließt mit einem numerischen Beispiel.