895 resultados para Dimethyl ether (DME)
Resumo:
Poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) (PFA) with 2 mol% perfluoropropyl vinyl ether (PPVE) was exposed to gamma -irradiation in vacuum at both 77 K and room temperature and the ESR spectra recorded. Both the main chain, similar to CF2-(CF)-F-.-CF(2)similar to, and end chain, similar to (CF2CF2)-F-. radicals were identified at both temperatures and their thermal stabilities measured, No radicals unique to the radiolytic cleavage at the PPVE units were observed at room temperature, either due to the low concentration of the comonomer or beta -scission to form a chain end radical and a nonradical species. G-values for radical formation at room temperature and 77 K were found to be 0.93 and 0.16, respectively. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The molecular weight changes which occur on the gamma -radiolysis of poly(dimethyl siloxane) under vacuum between 77 and 373 K and in air at 303 K have been investigated using triple detection GPC to obtain the complete molecular weight distributions for the irradiated samples and to determine the number and weight average molecular weights. The results have been interpreted in terms of the relative yields of scission and crosslinking. The total yields for crosslinking predominate over those for scission at all the temperatures investigated for radiolysis under vacuum. Based on a solid-state Si-29 NMR analysis of PDMS irradiated under vacuum at 303 K, which yielded a value of G(Y) of 1.70, the values of G(S) = 1.15 +/-0.2 and G(H) = 1.45 +/-0.2 were obtained for radiolysis under vacuum at 303 K. For radiolysis in air at 303 K, crosslinking was also predominant, but the nett yield of crosslinking was much less than that observed for radiolysis under vacuum. Under the conditions of the radiolysis in air at 303 K, because of the low solubility of oxygen in PDMS, it is likely that the radiation chemistry is limited by oxygen diffusion. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Raman spectroscopy has been used to investigate the structure of the molybdenum cofactor in DMSO reductase from Rhodobacter capsulatus. Three oxidized forms of the enzyme, designated 'redox cycled', 'as prepared', and DMSORmodD, have been studied using 752 nm laser excitation. In addition, two reduced forms of DMSO reductase, prepared either anaerobically using DMS or using dithionite, have been characterized. The 'redox cycled' form has a single band in the Mo=O stretching region at 865 cm(-1) consistent with other studies. This oxo ligand is found to be exchangeable directly with (DMSO)-O-18 or by redox cycling. Furthermore, deuteration experiments demonstrate that the oxo ligand in the oxidized enzyme has some hydroxo character, which is ascribed to a hydrogen bonding interaction with Trp 116. There is also evidence from the labeling studies for a modified dithiolene sulfur atom, which could be present as a sulfoxide. In addition to the 865 cm(-1) band, an extra band at 818 cm(-1) is observed in the Mo=O stretching region of the 'as prepared' enzyme which is not present in the 'redox cycled' enzyme. Based on the spectra of unlabeled and labeled DMS reduced enzyme, the band at 818 cm(-1) is assigned to the S=O stretch of a coordinated DMSO molecule. The DMSORmodD form, identified by its characteristic Raman spectrum, is also present in the 'as prepared' enzyme preparation but not after redox cycling. The complex mixture of forms identified in the 'as prepared' enzyme reveals a substantial degree of active site heterogeneity in DMSO reductase.
Resumo:
A series of crown ether appended macrocyclic amines has been prepared comprising benzo-12-crown-4, benzo-15-crown-5, or benzo-18-crown-6 attached to a diamino-substituted cyclam. The Co-III complexes of these three receptors have been prepared and characterized spectroscopically and structurally. Crystal structures of each receptor in complex with an alkali metal ion and structures of the benzo-12-crown-4 and benzo-15-crown-5-receptors without guest ions are reported. 2D NMR and molecular mechanics modeling have been used to examine conformational variations upon guest ion complexation. Addition of cations to these receptors results in an appreciable anodic shift in the Co-III:II 11 redox potential, even in aqueous solution, but little cation selectivity is observed. Evidence for complex formation has been corroborated by Na-23 and Li-7 NMR spectroscopy and electrospray mass spectrometry.
Resumo:
A study has been made to investigate the radiation grafting of styrene onto poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA) substrates, using the simultaneous irradiation method. Two PFA polymers of different comonomer perfluoropropyl vinyl ether (PPVE) content and degree of crystallinity were used. Effects of grafting conditions such as monomer concentrations, type of solvent, dose rate, and irradiation dose on the grafting yield were investigated. Of the six different solvents used, the most efficient in terms of increasing grafting yield were dichloromethane, benzene, and methanol. The degree of grafting increased with increasing radiation dose up to 500 kGy, stabilizing above this dose. However, the grafting yield decreased with an increase in the dose rate. The grafting of styrene onto the PFA substrates was confirmed by FTIR-ATR and micro-Raman spectroscopy, The increase in the overall grafting yield was accompanied by a proportional increase in the penetration depth of the grafts into the substrate.
Resumo:
A system for expressing site-directed mutants of the molybdenum enzyme dimethyl sulfoxide reductase from Rhodobacter capsulatus in the natural host was constructed. This system was used to Generate and express dimethyl sulfoxide reductase with a Y114F mutation. The Y114F mutant had an increased k(cat) and increased K-m toward both dimethyl sulfoxide and trimethylamine N-oxide compared to the native enzyme, and the value of k(cat)/K-m was lower for both substrates in the mutant enzyme. The Y114F mutant, as isolated, was able to oxidize dimethyl sulfide with phenazine ethosulfate as the electron acceptor but with a lower k(cat) than that of the native enzyme. The pH optimum of dimethyl sulfide: acceptor oxidoreductase activity in the Y114F mutant was shown to be shifted by +1 pH unit compared to the native enzyme. The Y114F mutant did not form a pink complex with dimethyl sulfide, which is characteristic of the native enzyme. The mutant enzyme showed a large increase in the K-d for DMS. Direct electrochemistry showed that the Mo(V)/Mo(IV) couple was unaffected by the Y114F mutant, but the midpoint potential of the Mo(VI)/Mo(V) couple was raised by about 50 mV. These data confirm that the Y114 residue plays a critical role in oxidation-reduction processes at the molybdenum active site and in oxygen atom transfer associated with sulfoxide reduction.
Resumo:
The structural changes which occur on the gamma -radiolysis of poly(dimethyl siloxane) (PDMS) under vacuum at 303 K have been investigated using Si-29 and C-13 NMR. New structural units consistent with main chain scission and crosslinking through both H-linking and Y-linking reactions have been identified. The results obtained at various absorbed doses have been used to calculate the G-values for scission and crosslinking. G-values for scission of G(S) = 1.3 +/- 0.2, for H-linking of G(D-CH2-R) = 0.34 +/- 0.02 and for Y-Linking of G(Y) = 1.70 +/- 0.09 were obtained for radiolysis under vacuum at 303 K. Thus crosslinking predominates over scission for radiolysis of PDMS under these conditions, and, by contrast with previous studies, Y-links have been shown to be the predominant form of crosslinks. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Dimethyl sulphide dehydrogenase catalyses the oxidation of dimethyl sulphide to dimethyl sulphoxide (DMSO) during photoautotrophic growth of Rhodovulum sulfidophilum . Dimethyl sulphide dehydrogenase was shown to contain bis (molybdopterin guanine dinucleotide)Mo, the form of the pterin molybdenum cofactor unique to enzymes of the DMSO reductase family. Sequence analysis of the ddh gene cluster showed that the ddhA gene encodes a polypeptide with highest sequence similarity to the molybdop-terin-containing subunits of selenate reductase, ethylbenzene dehydrogenase. These polypeptides form a distinct clade within the DMSO reductase family. Further sequence analysis of the ddh gene cluster identified three genes, ddhB , ddhD and ddhC . DdhB showed sequence homology to NarH, suggesting that it contains multiple iron-sulphur clusters. Analysis of the N-terminal signal sequence of DdhA suggests that it is secreted via the Tat secretory system in complex with DdhB, whereas DdhC is probably secreted via a Sec-dependent mechanism. Analysis of a ddhA mutant showed that dimethyl sulphide dehydrogenase was essential for photolithotrophic growth of Rv. sulfidophilum on dimethyl sulphide but not for chemo-trophic growth on the same substrate. Mutational analysis showed that cytochrome c (2) mediated photosynthetic electron transfer from dimethyl sulphide dehydrogenase to the photochemical reaction centre, although this cytochrome was not essential for photoheterotrophic growth of the bacterium.
Resumo:
Dimethyl sulfide dehydrogenase from the purple phototrophic bacterium Rhodovulum sulfidophilum catalyzes the oxidation of dimethyl sulfide to dimethyl sulfoxide. Recent DNA sequence analysis of the ddh operon, encoding dimethyl sulfide dehydrogenase (ddhABC), and biochemical analysis (1) have revealed that it is a member of the DMSO reductase family of molybdenum enzymes and is closely related to respiratory nitrate reductase (NarGHI). Variable temperature X-band EPR spectra (120122 K) of purified heterotrimeric dimethyl sulfide dehydrogenase showed resonances arising from multiple redox centers, Mo(V), [3Fe-4S](+), [4Fe-4S](+), and a b-type heme. A pH-dependent EPR study of the Mo(V) center in (H2O)-H-1 and (H2O)-H-2 revealed the presence of three Mo(V) species in equilibrium, Mo(V)-OH2, Mo(v)-anion, and Mo(V)-OH. Above pH 8.2 the dominant species was Mo(V)-OH. The maximum specific activity occurred at pH 9.27. Comparison of the rhombicity and anisotropy parameters for the Mo(V) species in DMS dehydrogenase with other molybdenum enzymes of the DMSO reductase family showed that it was most similar to the low-pH nitrite spectrum of Escherichia coli nitrate reductase (NarGHI), consistent with previous sequence analysis of DdhA and NarG. A sequence comparison of DdhB and NarH has predicted the presence of four [Fe-S] clusters in DdhB. A [3Fe-4S](+) cluster was identified in dimethyl sulfide dehydrogenase whose properties resembled those of center 2 of NarH. A [4Fe-4S](+) cluster was also identified with unusual spin Hamiltonian parameters, suggesting that one of the iron atoms may have a fifth non-sulfur ligand. The g matrix for this cluster is very similar to that found for the minor conformation of center 1 in NarH [Guigliarelli, B., Asso, M., More, C., Augher, V., Blasco, F., Pommier, J., Giodano, G., and Bertrand, P. (1992) Eur. J. Biochem. 307,63-68]. Analysis of a ddhC mutant showed that this gene encodes the b-type cytochrome in dimethyl sulfide dehydrogenase. Magnetic circular dichroism studies revealed that the axial ligands to the iron in this cytochrome are a histidine and methionine, consistent with predictions from protein sequence analysis. Redox potentiometry showed that the b-type cytochrome has a high midpoint redox potential (E-o = +315 mV, pH 8).
Resumo:
A comparative study has been made of the radiation grafting of styrene onto poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) (PFA) and polypropylene (PP) substrates, using the simultaneous irradiation method. Effects of grafting conditions such as monomer concentrations, type of solvent, dose rate and irradiation dose on the grafting yield were investigated. Under the same grafting conditions it was found that a higher degree of grafting of styrene was obtained using a mixture of dichloromethane/methanol solvents for PFA and methanol for PP and the degree of grafting was higher in PP than in PFA at all doses. However, the micro-Raman spectroscopy analysis of the graft revealed that, for the same degree of grafting, the penetration depth of the grafted polystyrene into the substrate was higher in PFA than in PP substrates. In both polymers the crystallinity was hardly affected by the grafting process and the degree of crystallinity decreased slightly with grafting dose. The dependence of the initial rate of grafting on the dose rate and the monomer concentration was found to be 0.6 and 1.4 order for PFA and 0.15 and 2.2 for PP, respectively. The degree of grafting increased with increasing radiation dose in both polymers. However, the grafting yield decreased with an increase in the dose rate. The increase in the overall grafting yield for PFA and PP was accompanied by a proportional increase in the penetration depth of the graft into the substrates. (C) 2003 Society of Chemical Industry.
Resumo:
N,N-dimethyl-4-((phenylamino)methyl)aniline (1) was prepared by condensation of aniline and 4-(dimethylamino)benzaldehyde [1] N,N-dimethyl-4-(2,2,2-trichloro-1-(phenylamino)ethyl)aniline (2) was synthesized by trichloromethylation of the imine (N,N-dimethyl-4-((phenylimino)methyl)aniline (1)) with trichloroacetic anhydride under microwave irradiation [2] (Sheme 1). The present work reports the study of bacterial and yeast activity for the compound 2. The bacteria used in this study are Staphylococcus aureus, Escherichia coli and the yeast are Saccharomyces Cerevisiae Candida albican.The results that we will present are the determination of minimal inhibitory concentration (MIC), by means of microdilution by plate method and the specific growth constants for this microorganism. Further studies are being performed to determine viability and cellular injury with this drug.
Resumo:
Stool samples of 157 patients with AIDS, living in the county of São Paulo, were submitted to several techniques in the search for Cryptosporidium sp.. Among the various techniques tested for slide preparation (direct smear, spontaneous sedimentation method, and formol-ether concentration), the latter, formol-ether concentration, offered the best results, clearly outdoing all the others. Nineteen samples out of 157 prepared by this technique, after dyeing by the Kinyoun method or by carbol fuchsin dimethyl sulfoxide, were found to be positive for Cryptosporidium sp..
Resumo:
The effect of anesthetic drugs on the localization of adult worms in albino mice was compared. The animals with 56 days of infection were anesthetized with pentobarbital sodium, ether or chlorophorm. Perfusion was carried out immediately after, recovering the worms and classifying them in relation to their localization on the liver or portal vein and the mesenteric veins. Our results showed that pentobarbital sodium produced a greater displacement of the worms to the liver (89%) than ether (76%) and chlorophorm (34%) did, when compared to the control group (22%). The difference between pentobarbital sodium and ether was significant (p < 0.05). We suggest that anesthetic drugs may not be used in studies on the distribution of adult worms in several hosts.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Pyranojacareubin; 1,5-dihydroxy-6',6'-dimethyl-2H-pyran(2',3':6,7) -6",6"-dim-ethyI-2H,4H-pyran(2",3":2,3)xanthone and a new xanthone l,6-dihydroxy-5-methoxy-6',6'-dim-ethyl-2H-pyran(2',3':3,2)-7-(3,3-dimethylprop-2-enyl)xanthone were isolated from the ether extract of the root bark of Rheedia acuminata together with friedelin and friedelanol.