790 resultados para Deproteinized bovine bone mineral


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aiming to identify novel genetic variants and to confirm previously identified genetic variants associated with bone mineral density (BMD), we conducted a three-stage genome-wide association (GWA) meta-analysis in 27 061 study subjects. Stage 1 meta-analyzed seven GWA samples and 11 140 subjects for BMDs at the lumbar spine, hip and femoral neck, followed by a Stage 2 in silico replication of 33 SNPs in 9258 subjects, and by a Stage 3 de novo validation of three SNPs in 6663 subjects. Combining evidence from all the stages, we have identified two novel loci that have not been reported previously at the genome-wide significance (GWS; 5.0 × 10-8) level: 14q24.2 (rs227425, P-value 3.98 × 10-13, SMOC1) in the combined sample of males and females and 21q22.13 (rs170183, P-value 4.15 × 10-9, CLDN14) in the female-specific sample. The two newly identified SNPs were also significant in the GEnetic Factors for OSteoporosis consortium (GEFOS, n 5 32 960) summary results. We have also independently confirmed 13 previously reported loci at the GWS level: 1p36.12 (ZBTB40), 1p31.3 (GPR177), 4p16.3 (FGFRL1), 4q22.1 (MEPE), 5q14.3 (MEF2C), 6q25.1 (C6orf97, ESR1), 7q21.3 (FLJ42280, SHFM1), 7q31.31 (FAM3C, WNT16), 8q24.12 (TNFRSF11B), 11p15.3 (SOX6), 11q13.4 (LRP5), 13q14.11 (AKAP11) and 16q24 (FOXL1). Gene expression analysis in osteogenic cells implied potential functional association of the two candidate genes (SMOC1 and CLDN14) in bone metabolism. Our findings independently confirm previously identified biological pathways underlying bone metabolism and contribute to the discovery of novel pathways, thus providing valuable insights into the intervention and treatment of osteoporosis. © The Author 2013. Published by Oxford University Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wallace, Joanne, et al., 'Body composition and bone mineral density changes during a premier league season as measured by dual-energy X-ray absorptiometry', International Journal of Body Composition Research (2006) 4(2) pp.61-66 RAE2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteoporosis (OP) is one of the most prevalent bone diseases worldwide with bone fracture the major clinical consequence. The effect of OP on fracture repair is disputed and although it might be expected for fracture repair to be delayed in osteoporotic individuals, a definitive answer to this question still eludes us. The aim of this study was to clarify the effect of osteoporosis in a rodent fracture model. OP was induced in 3-month-old rats (n = 53) by ovariectomy (OVX) followed by an externally fixated, mid-diaphyseal femoral osteotomy at 6 months (OVX group). A further 40 animals underwent a fracture at 6 months (control group). Animals were sacrificed at 1, 2, 4, 6, and 8 weeks postfracture with outcome measures of histology, biomechanical strength testing, pQCT, relative BMD, and motion detection. OVX animals had significantly lower BMD, slower fracture repair (histologically), reduced stiffness in the fractured femora (8 weeks) and strength in the contralateral femora (6 and 8 weeks), increased body weight, and decreased motion. This study has demonstrated that OVX is associated with decrease in BMD (particularly in trabecular bone) and a reduction in the mechanical properties of intact bone and healing fractures. The histological, biomechanical, and radiological measures of union suggest that OVX delayed fracture healing. (C) 2007 Orthopaedic Research Society. Published by Wiley Periodicals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of individual nutrients or foods have revealed much about dietary influences on bone. Multiple food or nutrient approaches, such as dietary pattern analysis, could offer further insight but research is limited and largely confined to older adults. We examined the relationship between dietary patterns, obtained by a posteriori and a priori methods, and bone mineral status (BMS; collective term for bone mineral content (BMC) and bone mineral density (BMD)) in young adults (20-25 years; n 489). Diet was assessed by 7 d diet history and BMD and BMC were determined at the lumbar spine and femoral neck (FN). A posteriori dietary patterns were derived using principal component analysis (PCA) and three a priori dietary quality scores were applied (dietary diversity score (DDS), nutritional risk score and Mediterranean diet score). For the PCA-derived dietary patterns, women in the top compared to the bottom fifth of the 'Nuts and Meat' pattern had greater FN BMD by 0.074 g/cm(2) (P=0.049) and FN BMC by 0.40 g (P=0.034) after adjustment for confounders. Similarly, men in the top compared to the bottom fifth of the 'Refined' pattern had lower FN BMC by 0.41 g (P-0.049). For the a priori DDS, women in the top compared to the bottom third had lower FN BMD by 0.05 g/cm(2) after adjustments (P=0.052), but no other relationships with BMS were identified. In conclusion, adherence to a 'Nuts and Meat' dietary pattern may be associated with greater BMS in young women and a 'Refined' dietary pattern may be detrimental for bone health in young men.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Interest in the prevention of osteoporosis is increasing and thus there is a need for an acceptable osteoporosis prevention programme in general practice. AIM. A study was undertaken to identify a cohort of middle-aged women attending a general practice who would be eligible for a longitudinal study looking at bone mineral density, osteoporosis and the effectiveness of hormone replacement therapy. This study aimed to describe the relationship between medical and lifestyle risk factors for osteoporosis and the initial bone density measurements in this group of women. METHOD. A health visitor administered a questionnaire to women aged between 48 and 52 years registered with a Belfast general practice. The main outcome measures were menopausal status, presence of medical and lifestyle risk factors and bone mineral density measurements. RESULTS. A total of 358 women our of 472 (76%) took part in the study which was conducted in 1991 and 1992. A highly significant difference was found between the mean bone mineral density of premenopausal, menopausal and postmenopausal women within the narrow study age range, postmenopausal women having the lowest bone mineral density. A significant relationship was found between body mass index and bone mineral density, a greater bone mineral density being found among women with a higher body mass index. Risk factors such as smoking and sedentary lifestyle were common (reported by approximately one third of respondents) but a poor relationship was found between these two and all the other risk factors and bone mineral density in this age group. CONCLUSION. Risk of osteoporosis cannot be identified by the presence of risk factors in women aged between 48 and 52 years. In terms of a current prevention strategy for general practice it would be better to take a population-based approach except for those women known to be at high risk of osteoporosis: women with early menopause or those who have had an oophorectomy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity.