952 resultados para Dental Implant
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: To evaluate the effect of insertion torque on micromotion to a lateral force in three different implant designs. Material and methods: Thirty-six implants with identical thread design, but different cutting groove design were divided in three groups: (1) non-fluted (no cutting groove, solid screw-form); (2) fluted (901 cut at the apex, tap design); and (3) Blossomt (Patent pending) (non-fluted with engineered trimmed thread design). The implants were screwed into polyurethane foam blocks and the insertion torque was recorded after each turn of 901 by a digital torque gauge. Controlled lateral loads of 10N followed by increments of 5 up to 100N were sequentially applied by a digital force gauge on a titanium abutment. Statistical comparison was performed with two-way mixed model ANOVA that evaluated implant design group, linear effects of turns and displacement loads, and their interaction. Results: While insertion torque increased as a function of number of turns for each design, the slope and final values increased (Po0.001) progressively from the Blossomt to the fluted to the non-fluted design (M +/- standard deviation [SD] = 64.1 +/- 26.8, 139.4 +/- 17.2, and 205.23 +/- 24.3 Ncm, respectively). While a linear relationship between horizontal displacement and lateral force was observed for each design, the slope and maximal displacement increased (Po0.001) progressively from the Blossomt to the fluted to the non-fluted design (M +/- SD 530 +/- 57.7, 585.9 +/- 82.4, and 782.33 +/- 269.4 mm, respectively). There was negligible to moderate levels of association between insertion torque and lateral displacement in the Blossomt, fluted and non-fluted design groups, respectively. Conclusion: Insertion torque was reduced in implant macrodesigns that incorporated cutting edges, and lesser insertion torque was generally associated with decreased micromovement. However, insertion torque and micromotion were unrelated within implant designs, particularly for those designs showing the least insertion torque.
Resumo:
Background: Chemical modification of implant surface is typically associated with surface topographic alterations that may affect early osseointegration. This study investigates the effects of controlled surface alterations in early osseointegration in an animal model.Methods: Five implant surfaces were evaluated: 1) alumina-blasting, 2) biologic blasting, 3) plasma, 4) microblasted resorbable blasting media (microblasted RBM), and 5) alumina-blasting/acid-etched (AB/AE). Surface topography was characterized by scanning electron microscopy and optical interferometry, and chemical assessment by x-ray photoelectron spectroscopy. The implants were placed in the radius of six dogs, remaining 2 and 4 weeks in vivo. After euthanization, specimens were torqued-to-interface failure and non-decalcified - processed for histomorphologic bone-implant contact, and bone area fraction-occupied evaluation. Statistical evaluation was performed by one-way analysis of variance (P < 0.05) and post hoc testing by the Tukey test.Results: The alumina-blasting surface presented the highest average surface roughness and mean root square of the surface values, the biologic blasting the lowest, and AB/AE an intermediate value. The remaining surfaces presented intermediate values between the biologic blasting and AB/AE. The x-ray photoelectron spectroscopy spectra revealed calcium and phosphorus for the biologic blasting and microblasted RBM surfaces, and the highest oxygen levels for the plasma, microblasted RBM, and AB/AE surfaces. Significantly higher torque was observed at 2 weeks for the microblasted RBM surface (P < 0.04), but no differences existed between surfaces at 4 weeks (P > 0.74). No significant differences in bone-implant contact and bone area fraction-occupied values were observed at 2 and 4 weeks.Conclusion: The five surfaces were osteoconductive and resulted in high degrees of osseointegration and biomechanical fixation. J Periodontol 2011;82:742-750.
Resumo:
Platelet-derived growth factor-BB (PDGF-BB) stimulates repair of healing-impaired chronic wounds such as diabetic ulcers and periodontal lesions. However, limitations in predictability of tissue regeneration occur due, in part, to transient growth factor bioavailability in vivo. Here, we report that gene delivery of PDGF-B stimulates repair of oral implant extraction socket defects. Alveolar ridge defects were created in rats and were treated at the time of titanium implant installation with a collagen matrix containing an adenoviral (Ad) vector encoding PDGF-B (5.5 x 10(8) or 5.5 x 10(9) pfu ml (1)), Ad encoding luciferase (Ad-Luc; 5.5 x 10(9) pfu ml (1); control) or recombinant human PDGF-BB protein (rhPDGF-BB, 0.3 mg ml (1)). Bone repair and osseointegration were measured through backscattered scanning electron microscopy, histomorphometry, microcomputed tomography and biomechanical assessments. Furthermore, a panel of local and systemic safety assessments was performed. Results indicated that bone repair was accelerated by Ad-PDGF-B and rhPDGF-BB delivery compared with Ad-Luc, with the high dose of Ad-PDGF-B more effective than the low dose. No significant dissemination of the vector construct or alteration of systemic parameters was noted. In summary, gene delivery of Ad-PDGF-B shows regenerative and safety capabilities for bone tissue engineering and osseointegration in alveolar bone defects comparable with rhPDGF-BB protein delivery in vivo. Gene Therapy (2010) 17, 95-104; doi: 10.1038/gt.2009.117; published online 10 September 2009
Resumo:
Purpose This in vitro study compared the dimensional accuracy of two impression techniques Duralay splinted impression copings (D) and metal splinted impression copings (M) for implant supported pros theses Materials and Methods A master cast with four parallel implant abutment analogs and a passive framework were fabricated Vinyl polysiloxane impression material was used for all impressions with a metal stock tray Two groups (D and M) were tested (n = 5) The measurement method employed was just one titanium screw tightened to the framework Each group s measurements were analyzed using software that received the images of a video camera coupled to a stereomicroscope at X100 magnification The results were analyzed statistically (t test) Results The mean values of abutment/framework interface gaps were master cast = 32 mu m (SD 2), group D = 165 mu m (SD 60), and group M = 69 mu m (SD 36) There was a statistically significant difference between the D and M groups (P <= 001) Conclusion Under the limitations of this study, it could be suggested that a more accurate working cast can be fabricated using metal splinted impression copings INT J ORAL MAXILLOFAC IMPLANTS 2010 25 1153-1158
Resumo:
Purpose: To investigate, in vitro, the dimensional accuracy of two impression techniques (squared impression copings and squared impression copings sandblasted and coated with impression adhesive) made of vinyl polysiloxane and polyether impression materials. Materials and Methods: A master cast (control group) with four parallel implant abutment analogs, a passive framework, and a custom aluminum tray was fabricated. Four groups (n = 5 each group) were tested: squared Impregum (SI), squared Express (SE), sandblasted adhesive squared Impregum (ASI), and sandblasted adhesive squared Express (ASE). The measurement method employed was just one titanium screw tightened to the framework. A stereomicroscope was used to evaluate the fit of the framework by measuring the size of the gap between the abutment and the framework. The results were analyzed statistically. Results: The mean values for the abutment/framework interface gaps were: master cast, 31.63 mu m (SD 2.16); SI, 38.03 mu m (SD 9.29); ASI, 46.80 mu m (SD 8.47); SE, 151.21 mu m (SD 22.79); and ASE, 136.59 mu m (SD 29.80). No significant difference was detected between the SI or ASI techniques and the master cast. No significant difference was detected between the SE and ASE techniques. Conclusion: Within the limitations of this study, it can be concluded that Impregum Soft medium consistency was the best impression material and the impression technique did not influence the accuracy of the stone casts. INT J ORAL MAXILLOFAC IMPLANTS 2010;25:771-776
Resumo:
The fixation and the bone ingrowth at the interface of porous cylindrical implants (total porosity of 37% and average pores diameter of 480 mu m) were compared in vivo to rough cylindrical implants (R-a = 5.3 mu m), both of commercially pure titanium, made by powder metallurgy. The implants were inserted into the tibias of 20 rabbits and the animals were sacrificed 4 and 8 weeks after surgery. The percentage of bone-implant contact observed in porous implant was significantly larger than in the rough ones for all of sacrifice periods, respectively, 57% vs. 46% after 4 weeks, and 59% vs. 50% after 8 weeks. The mechanical tests showed a significant increase in the shear strength of the porous implants for the two analyzed periods, 4 and 8 weeks (14 and 20 MPa), when compared with rough ones (4 and 13 MPa). These results suggest that porous implants improve the contact at the implant-bone interface and increase the fixation to the bone, improving the osseointegration. Thus, the porous implant might be an alternative to dental implant in less favorable conditions, and appear to be better fixed to bone, offering promising alternatives.
Resumo:
Background: Immunosuppressive agents may induce severe changes on bone metabolism and may impair the osseointegration process during the implant healing. No data are available concerning the influence of cyclosporin A on dental implants previously integrated to the bone. The aim of this study was to evaluate the influence of cyclosporin A administration on the mechanical retention of bone previously integrated to dental implants.Methods: Eighteen female New Zealand rabbits were submitted to an implant surgery. Each animal received one commercial dental implant of 10 x 3.75 mm. After 12 weeks of an undisturbed healing period, six animals were randomly sacrificed and the removal torque test was performed (group A). In addition, six animals were submitted to a daily injection of cyclosporin A in a dosage of 10 mg/kg (group C), and six animals received saline solution as a control (group B). After 12 weeks of cyclosporin A administration, groups B and C were sacrificed and submitted to a removal torque test in which higher values can be interpreted as higher mechanical bone retention to the implant surface or higher osseointegration.Results: the removal torque results were 30.5 (+/- 9.8) Ncm for group A, 50.17 (+/- 17.5) Ncm for group B, and 26 (+/- 7.8) Ncm for group C. The statistical analysis showed significant differences between groups A and B (P < 0.05) and groups B and C (P < 0.01).Conclusion: Cyclosporin A administration may impair the mechanical retention of dental implants previously integrated to the bone.
Resumo:
The laser Welding process was introduced into dentistry by the end of the 1980s, resulting on a great impulse to that area with the development of cheaper and smaller equipment, using simpler technique. This allowed greater use of that process on the confection of prostheses compared to the brazing process since the heat source for that process is a concentrated light beam of high power, which minimizes distortion problems on the prosthetic pieces. Ag-Pd-Au-Cu alloy used on the confection of dental implant prostheses was observed before and after subjection to the laser welding process. The microstructure was analyzed with the. use of optic microscopy and the corrosion resistance was studied by the traditional electrochemical techniques and by electrochemical impedance, under environmental conditions simulating the aggressiveness found in the mouth cavity. A structural change was detected on the weld area, which presented a refined microstructure deriving from the high-speed cooling. The base metal out of the weld area presented a fusion coarse microstructure. The electrochemical essays showed differences on the potentiodynamic polarization behavior in both weld and metal base areas, indicating superior corrosion resistance in the weld area. The impedance spectra were characterized by capacitive distorted components, presenting linear impedance in the low frequencies area. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO2 or TiO2, and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO4 in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases alpha Ti, beta Ti, Ti6O, Ti3O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters: the aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In orofacial implantology there are many types of implants for the different systems. Among these is the implant surface type, e.g., a screw type, cylindrical and laminar. Furthermore, the implants are different in their dimensions, their metal composition, their surface condition, such as smooth, grit or layered surfaces and in their methods of application. Two different self-tapping implants, one smooth and the other grit-blasted, are screwed into the bone, and another one with a plasma of titanium coating, which is also in a screw form but with greater spaces between the screw threads are compared. The greatest amount of bone deposition in the bone/implant interface was encountered in the latter one, the smooth surfaced implant being in second place. All of these systems can alter the implant healing process and to demonstrate this, we injected bone markers in the rabbits over different periods of time so as to observe the different areas of bone deposition in the tibias where the implants had been inserted. The bone tracers used were Alizarin, Calcein and Xylenol-orange. The amount of deposition was calculated by using the method of surface morphometry.
Resumo:
The aim of this investigation was to evaluate the cleaning effect of CO 2 on surface topography and composition of failed dental implant surfaces. Ten failed dental implants were retrieved from nine patients (mean age, 46.33 ± 5.81 years) as a result of early or late failure. The implants were divided into two parts: one side of the implant was irradiated with a CO 2 laser (test side), while the other side did not receive irradiation (control side). The CO 2 laser was operated at 1.2 W in a continuous wave for 40 seconds (40 J energy). The handpiece of the CO 2 laser was kept at a distance of 30 mm from the implant surface, resulting in a spot area of 0.031415 cm 2 (38.20 W/cm 2; 1559 J/cm 2) in scanning mode (cervical-apical). One unused dental implant was used as a negative control for both groups. All implant surfaces were examined by scanning electron mi croscopy (SEM) and energy-dispersive spectrometer x-ray (EDS) for element analysis. SEM showed that the surface of the test sides consisted of different degrees of organic residues, appearing mainly as dark stains similar to those observed on the control sides. None of the test surfaces presented alterations such as crater-like alterations, lava-like layers, or melting compared with the nonirradiated surfaces. Foreign elements such as carbon, oxygen, sodium, calcium, and aluminum were detected on both sides. These results suggest that CO 2 laser irradiation does not modify the implant surface, although the cleaning effect was not satisfactory.
Prosthetic rehabilitation of a bone defect with a teeth-implant supported, removable partial denture
Resumo:
The use of teeth-implant, mucosa-supported removable dentures for rehabilitation of partially edentulous patients involves highly complex biomechanical aspects. This type of prosthesis associates 3 kinds of support that react differently to the functional and parafunctional forces developed in the oral cavity. Although the construction of removable partial dentures may seem paradoxical when osseointegrated implants are placed, in some cases, this option is an excellent alternative to solve difficulties related to the anatomic, biologic, psychomotor, and financial conditions of the patient. This article reports on a case in which a teeth-implant, mucosa-supported removable partial denture was the option of choice for a patient with financial and anatomic limitations, having a large structural loss of the residual alveolar ridge caused by trauma by a gunshot injury at the mandible. The 5-year follow-up did not reveal any type of biomechanical or functional problem. Copyright © 2006 by Lippincott Williams and Wilkins.
Resumo:
Purpose: The aim of this study was to evaluate the effect of different levels of unilateral angular misfit on preload maintenance of retention screws of single implant-supported prostheses submitted to mechanical cycling. Materials and methods: Premachined UCLA abutments were cast with cobalt-chromium alloy to obtain 48 crowns divided into four groups (n=12). The crowns presented no misfit in Group A (control group) and unilateral misfits of 50μm, 100μm and 200μm in the groups B, C and D, respectively. The crowns were attached to external hexagon implants with a titanium retention screw with torque of 30N/cm. Oblique loading of 130N at 2Hz was applied on each replica, totalizing 5×104 and 1×106cycles. Detorque values were measured initially and after each cycling period. Data were evaluated by analysis of variance and Tukey's HSD test (p<0.05). Results: All groups presented reduced initial detorque values (p< 0.05) in comparison to the insertion torque (30. ± 0.5. N/cm) and Group A (25.18. N/cm) exhibited the lowest reduction. After mechanical cycling, all groups presented detorque values from 19.5. N/cm to 22.38. N/cm and the mechanical cycling did not statistically influence the detorque values regardless the misfit level of the replicas. Conclusion: The unilateral misfit influenced the preload maintenance only before mechanical cycling. The mechanical cycling did not influence the torque reduction. © 2010 Japan Prosthodontic Society.
Resumo:
Objectives: The maintenance and stability of peri-implantar soft tissue seem to be related to the crestal bone around the implant platform and different implant designs connections might affect this phenomenon. The aim of this study was to evaluate by photoelastic analysis the stress distribution in the cervical and apical site of implant-abutment interface of conventional implant joints (external hex, internal hex and cone morse) and compare to the novel platform switching design. Materials and methods: It was fabricated photoelastic models using five different implant-abutment connection, one set of external hex (Alvim Ti, Neodent, Curitiba, Brazil), one set of internal hex (Full Osseotite, Biomet 3i, Florida, USA), one cone morse set (Alvim CM, Neodent, Curitiba, Brazil), and two sets of internal hex plus platform switching concept (Alvim II Plus, Neodent, Curitiba, Brazil) (Certain Prevail, Biomet 3i, Florida, USA). These models were submitted to two compressive loads, axial from 20 kgf (load I) and another (load II), inclined 45° from 10 kgf. During the qualitative analysis, digital pictures were taken from a polariscope, for each load situation. For the quantitative analyses in both situations of load, the medium, minimum and maximum in MPa values of shear strain were determined in the cervical and apical site. The Kruskal-Wallis test was used to compare the results between the different systems and between cervical and apical site were compared using Mann-Whitney U test. Results: The results from qualitative analysis showed less concentration of strain in the cervical area to the internal hex plus platform switching (Certain Prevail), in both situation of load. The same results were get in the quantitative analysis, showing less stress concentrations around the implant Certain Prevail with internal hex plus the novel design (17.9 MPa to load I and 29.5 MPa to load II), however, without statistical significant difference between the systems. Conclusion: The minor stress concentration strongly suggest the use of platform switching design as a manner to prevent bone loss around the implant-abutment platform. Clinical Significance: From the result of this study its possible to make clinical decision for implant system which provides implant components with platform switching characteristics.