960 resultados para Density Polyethylene
Resumo:
Increasing amounts of plastic waste in the environment have become a problem of gigantic proportions. The case of linear low-density polyethylene (LLDPE) is especially significant as it is widely used for packaging and other applications. This synthetic polymer is normally not biodegradable until it is degraded into low molecular mass fragments that can be assimilated by microorganisms. Blends of nonbiodegradable polymers and biodegradable commercial polymers such as poly (vinyl alcohol) (PVA) can facilitate a reduction in the volume of plastic waste when they undergo partial degradation. Further, the remaining fragments stand a greater chance of undergoing biodegradation in a much shorter span of time. In this investigation, LLDPE was blended with different proportions of PVA (5–30%) in a torque rheometer. Mechanical, thermal, and biodegradation studies were carried out on the blends. The biodegradability of LLDPE/PVA blends has been studied in two environments: (1) in a culture medium containing Vibrio sp. and (2) soil environment, both over a period of 15 weeks. Blends exposed to culture medium degraded more than that exposed to soil environment. Changes in various properties of LLDPE/PVA blends before and after degradation were monitored using Fourier transform infrared spectroscopy, a differential scanning calorimeter (DSC) for crystallinity, and scanning electron microscope (SEM) for surface morphology among other things. Percentage crystallinity decreased as the PVA content increased and biodegradation resulted in an increase of crystallinity in LLDPE/PVA blends. The results prove that partial biodegradation of the blends has occurred holding promise for an eventual biodegradable product
Resumo:
Upgrading two widely used standard plastics, polypropylene (PP) and high density polyethylene (HDPE), and generating a variety of useful engineering materials based on these blends have been the main objective of this study. Upgradation was effected by using nanomodifiers and/or fibrous modifiers. PP and HDPE were selected for modification due to their attractive inherent properties and wide spectrum of use. Blending is the engineered method of producing new materials with tailor made properties. It has the advantages of both the materials. PP has high tensile and flexural strength and the HDPE acts as an impact modifier in the resultant blend. Hence an optimized blend of PP and HDPE was selected as the matrix material for upgradation. Nanokaolinite clay and E-glass fibre were chosen for modifying PP/HDPE blend. As the first stage of the work, the mechanical, thermal, morphological, rheological, dynamic mechanical and crystallization characteristics of the polymer nanocomposites prepared with PP/HDPE blend and different surface modified nanokaolinite clay were analyzed. As the second stage of the work, the effect of simultaneous inclusion of nanokaolinite clay (both N100A and N100) and short glass fibres are investigated. The presence of nanofiller has increased the properties of hybrid composites to a greater extent than micro composites. As the last stage, micromechanical modeling of both nano and hybrid A composite is carried out to analyze the behavior of the composite under load bearing conditions. These theoretical analyses indicate that the polymer-nanoclay interfacial characteristics partially converge to a state of perfect interfacial bonding (Takayanagi model) with an iso-stress (Reuss IROM) response. In the case of hybrid composites the experimental data follows the trend of Halpin-Tsai model. This implies that matrix and filler experience varying amount of strain and interfacial adhesion between filler and matrix and also between the two fillers which play a vital role in determining the modulus of the hybrid composites.A significant observation from this study is that the requirement of higher fibre loading for efficient reinforcement of polymers can be substantially reduced by the presence of nanofiller together with much lower fibre content in the composite. Hybrid composites with both nanokaolinite clay and micron sized E-glass fibre as reinforcements in PP/HDPE matrix will generate a novel class of high performance, cost effective engineering material.
Resumo:
A method for the determination of volatile organic compounds (VOCs) in recycled polyethylene terephthalate and high-density polyethylene using headspace sampling by solid-phase microextraction and gas chromatography coupled to mass spectrometry detection is presented. This method was used to evaluate the efficiency of cleaning processes for VOC removal from recycled PET. In addition, the method was also employed to evaluate the level of VOC contamination in multilayer packaging material containing recycled HDPE material. The optimisation of the extraction procedure for volatile compounds was performed and the best extraction conditions were found using a 75 mu m carboxen-polydimethylsiloxane (CAR-PDMS) fibre for 20 min at 60 degrees C. The validation parameters for the established method were linear range, linearity, sensitivity, precision (repeatability), accuracy (recovery) and detection and quantification limits. The results indicated that the method could easily be used in quality control for the production of recycled PET and HDPE. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Low-density polyethylene was filled with cellulose fibres from sugar cane bagasse obtained from organosolv/supercritical carbon dioxide pulping process. The fibres were also used after chemical modification with octadecanoyl and dodecanoyl chloride acids. The morphology, thermal properties, mechanical properties in both the linear and nonlinear range, and the water absorption behaviour of ensuing composites were tested. The evidence of occurrence of the chemical modification was checked by X-ray photoelectron spectrometry. The degree of polymerisation of the fibres and their intrinsic properties (zero tensile strength) were determined. It clearly appeared that the surface chemical modification of cellulose fibres resulted in improved interfacial adhesion with the matrix and higher dispersion level. However, composites did not show improved mechanical performances when compared to unmodified fibres. This surprising result was ascribed to the strong lowering of the degree of polymerisation of cellulose fibres (as confirmed by the drastic decrease of their zero tensile strength) after chemical treatment despite the mild conditions used. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The mechanical and thermo-oxidative degradation of high density polyethylene (HDPE) was measured in a twin-screw extruder using various processing conditions. Two types of HDPE, Phillips and Ziegler-Natta, having different levels of terminal vinyl unsaturation were analysed. Mild screw profiles, having mainly conveying elements, have short mean residence times then profiles with kneading discs and left hand elements. Carbonyl and traps-vinylene group concentrations increased, whereas vinyl group concentration decreased with number of extrusions. Higher temperature profiles intensified these effects. The thermo-mechanical degradation mechanism begins with chain scission in the longer chains due to their higher probability of entanglements. These macroradicals then react with the vinyl terminal unsaturations of other chains producing chain branching. Shorter chains are more mobile, not suffering scission but instead are used for grafting the macroradicals, increasing the molecular weight. Increase in the levels of extrusion temperature, shear and vinyl end groups content facilitates the thermo-mechanical degradation reducing the amount of both, longer chains via chain scission and shorter chains via chain branching, narrowing the polydispersity. Phillips HDPE produces a higher level of chain branching than does the Ziegler-Natta type. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The oxidative and thermo-mechanical degradation of HDPE was studied during processing in an internal mixer under two conditions: totally and partially filled chambers, which provides lower and higher concentrations of oxygen, respectively. Two types of HDPEs, Phillips and Ziegler-Natta, having different levels of terminal vinyl unsaturations were analyzed. Materials were processed at 160, 200, and 240 degrees C. Standard rheograrns using a partially filled chamber showed that the torque is much more unstable in comparison to a totally filled chamber which provides an environment depleted of oxygen. Carbonyl and transvinylene group concentrations increased, whereas vinyl group concentration decreased with temperature and oxygen availability. Average number of chain scission and branching (n(s)) was calculated from MWD curves and its plotting versus functional groups' concentration showed that chain scission or branching takes place depending upon oxygen content and vinyl groups' consumption. Chain scission and branching distribution function (CSBDF) values showed that longer chains undergo chain scission easier than shorter ones due to their higher probability of entanglements. This yields macroradicals that react with the vinyl terminal unsaturations of other chains producing chain branching. Shorter chains are more mobile, not suffering scission but instead are used for grafting the macroradicals, increasing the molecular weight. Increase in the oxygen concentration, temperature, and vinyl end groups' content facilitates the thermo-mechanical degradation reducing the amount of both, longer chains via chain scission and shorter chains via chain branching, narrowing the polydispersity. Phillips HDPE produces a higher level of chain branching than the Ziegler-Natta's type at the same processing condition. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The AlMCM-41 material with Si/Al=50 was synthesized by hydrothermal method, using cethyltrimethylammonium as template. The protonic H-AlMCM-41 acid form was obtained by ion exchange with ammonium chloride solution and subsequent calcination. The characterization of the material by several techniques showed that a good-quality MCM-41 material was obtained. High-density polyethylene (HDPE) has been submitted to thermal degradation alone, and in presence of the exchanged H-AlMCM-41 catalyst at a concentration of 1: 1 in mass (H-AlMCM-41/HDPE). The reactor was connected on line to a gas chromatograph connected to a mass spectrometer. This process was evaluated by thermogravimetry (TG), from 350 to 600degreesC, under helium dynamic atmosphere, with heating rates of 5.0; 10.0 and 20.0 degreesC/min. From TG curves, the activation energy, calculated using a multiple heating rate integral kinetic method, decreased from 225.5 KJ.mol(-1), for the pure polymer (HDPE), to 184.7 KJ.mol(-1), in the presence of the catalyst (H-AlMCM-41/HDPE).
Resumo:
Branched polyethylene/high-density polyethylene blends (BPE/HDPE) with a wide range of molecular weights, melt flow indexes (MFI), and intrinsic viscosity were prepared using the homogeneous binary catalyst system composed by Ni(alpha-diimine)Cl-2 (1) (alpha-diimine = 1,4-bis(2,6-diisopropylphenyl)-acenaphthenediimine) and {Tp(Ms*)} TiCl3 (2) (Tp(Ms*)=hydridobis(3-mesitylpyrazol-1-yl)(5-mesityl-pyrazol-1-yl)) activated with MAO and/or TIBA in hexane at two different polymerization temperatures (30 and 55 degreesC) and by varying the nickel loading molar fraction (x(Ni)). At all Temperatures, a non-linear correlation between the x(Ni) and the productivity was observed, suggesting the occurrence of a synergistic effect between the nickel and the titanium catalyst precursors, which is more pronounced at 55 degreesC. The molecular weight of the BPE/HDPE blends considerably decreases with increasing Al/M molar ratio. The melt flow indexes (MFI) and intrinsic viscosities (eta) are strongly affected by x(Ni), but the melting temperatures are nearly constant, 132 +/- 3 degreesC. Dynamic mechanical thermal analysis (DMTA) shows the formation of different polymeric materials where the stiffness vanes according, to the x(Ni) and temperature used in the polymerization reaction. The surface morphology of the BPE/HDPE blends studied by scanning electron microscopy (SEM) revealed a low miscibility between the PE phases resulting in the formation of a sandwich structure after etching with o-xylene.
Resumo:
Linear low density polyethylene (LLDPE) with different branching contents were prepared from ethylene, without the addition of alpha-olefin comonomer, using a combination of catalyst precursors {Tp(Ms)}NiCl (1) (Tp(Ms) = hydridotris(3-mesitylpyrazol-1-yl)) and Cp2ZrCl2 (2) activated with MAO/TMA (1:1) in toluene at 0degreesC and by varying the nickel loading mole fraction (x(Ni)). The polymerization results showed that the turnover frequencies are strongly dependent on the x(Ni) varying from 6.6 x 10(3) to 32.1 x 10(3) mol[C2H4]/mol[Zr] h. The C-13 NMR spectra of the copolymers showed that the branch contents of the polymers increase as the x(Ni) increase in the medium promoting the production of polymers with a wide range of melting point (T-m) (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper presents results from stress cracking (SC) tests performed in both fresh and exposed high density polyethylene (HDPE) geomembranes (GM). The HDPE GMs were exposed to ultraviolet radiation, thermal aging (air oven) and tested for chemical compatibility with sodium hydroxide. Stress cracking tests in both fresh and degraded samples were performed in accordance to ASTM D5397: Notched Constant Tensile Load Test (NCTL) and Single Point-Notched Constant Tensile Load Test (SP-NCTL). The results of the NCTL showed that the geomembrane degradation process can be considered to be a catalyst for the phenomenon of SC because it caused a 50% to 60% reduction in stress crack resistance. The most resistance reduction was observed for the sample under chemical compatibility with sodium hydroxide. For the SP-NCTL, the results showed that the samples maintain the same trend verified in the NCTL. The largest resistance reduction was evidenced in samples undergoing ultraviolet degradation. © 2012 ejge.
Resumo:
This paper presents the results of thermogravimetric analysis (TGA) tests in PVC (1.0; 2.0 mm) and HDPE (0.8; 2.5 mm) geomembranes exposed to weathering and leachate after 30 months. The aim of this paper is the comparison of fresh and exposed samples to assess the degradation process concerning the total loss of mass of geomembranes. The exposure was conducted in accordance with the recommendations of ASTM standards. The TGA tests were carried out according to ASTM D6370 and E2105. Results show, for instance, that for PVC geomembrane the largest reductions of plasticizers occurred for samples exposed to weathering. The loss of plasticizers after the exposure contributed to the decrease of deformation and consequent increase in stiffness. TGA tests shows to be a valuable tool to control the quality of the materials. © 2012 ejge.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents results describing the physical, mechanical, and thermal properties (melt flow index - MFI and oxidative induction time - OIT) of high density polyethylene and poly (vinyl chloride) after weathering exposure (6, 12, 18, and 30 months). The materials exposed were geomembranes of two thicknesses: 1.0 and 2.0 mm (PVC) and 0.8 and 2.5 mm (HDPE). The climate parameters (average) obtained were 25 degrees C (temperature), 93 mm (precipitation), 66% (relative humidity), and 19 MJ/m(2). day (intensity of global radiation). Some results showed, for instance, that the behavior of the geomembranes changed after the exposures. A few minor variations in physical properties occurred. The density and thickness, for instance, varied 0.5-1.0% (average) for both the PVC and HDPE geomembranes. The mechanical properties changed as a function of the period of exposure. In general, some decreases were verified by the deformation of PVC. The samples became more rigid. In contrast, HDPE geomembranes became more ductile. Despite the variations in elasticity, some increases in deformability were verified. An MFI test showed some degradation in HDPE geomembranes. OIT tests revealed small values for both intact and exposed samples.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)