986 resultados para Defense mechanism


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Collateral circulation, defined as the supplementary vascular network that maintains cerebral blood flow (CBF) when the main vessels fail, constitutes one important defense mechanism of the brain against ischemic stroke. In the present study, continuous arterial spin labeling (CASL) was used to quantify CBF and obtain perfusion territory maps of the major cerebral arteries in spontaneously hypertensive rats (SHRs) and their normotensive Wistar-Kyoto (WKY) controls. Results show that both WKY and SHR have complementary, yet significantly asymmetric perfusion territories. Right or left dominances were observed in territories of the anterior (ACA), middle and posterior cerebral arteries, and the thalamic artery. Magnetic resonance angiography showed that some of the asymmetries were correlated with variations of the ACA. The leptomeningeal circulation perfusing the outer layers of the cortex was observed as well. Significant and permanent changes in perfusion territories were obtained after temporary occlusion of the right middle cerebral artery in both SHR and WKY, regardless of their particular dominance. However, animals with right dominance presented a larger volume change of the left perfusion territory (23 +/- 9%) than animals with left dominance (7 +/- 5%, P<0.002). The data suggest that animals with contralesional dominance primarily safeguard local CBF values with small changes in contralesional perfusion territory, while animals with ipsilesional dominance show a reversal of dominance and a substantial increase in contralesional perfusion territory. These findings show the usefulness of CASL to probe the collateral circulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs) are strongly associated with tissue destruction because of inflammation. In this study, we investigated the expression of MMPs and TIMPs messenger RNA and protein levels in apical periodontitis lesions. Methods: Tissue samples from patients presenting clinical signs of chronic apical abscess (CAA) or asymptomatic apical periodontitis (AAP) were collected postoperatively and used for gene expression analysis of MMP-2, -3, -7, -9, -14, -16, and -25; TIMP-1; and TIMP-2 in real-time polymerase chain reaction. Immunohistochemistry was also performed to detect the expression of MMP-7 and TIMP-1 proteins. Lastly, U-937 cells were induced to terminal differentiation into macrophages, infected with purified Escherichia coli lipopolysaccharide, and assessed for the expression of MMP-7 and TIMP-1 using immunocytochemistry and confocal microscopy. Results: Significantly higher messenger RNA levels were found for all genes in AAP and CAA samples when compared with healthy control samples (P < .001). AAP cases exhibited significantly higher TIMP-1 when compared with CAA cases, whereas CAA cases showed higher MMP-2, MMP-7, and MMP-9 messenger RNA levels (P < .05). We also detected positive the expression of MMP-7 and TIMP-1 proteins in the tissue samples. The expression of both MMP-7 and TIMP-1 were increased in lipopolysaccharide-stimulated cells compared with nonstimulated cells and appear to colocalize in the Golgi apparatus. Conclusions: MMPs appear to have an influential role in CAA cases in which ongoing tissue destruction is observed. TIMPs are preferentially associated with AAP, perhaps as a subsequent defense mechanism against excessive destruction. Taken together, our findings implicate MMP and TIMP molecules in the dynamics of inflammatory periapical lesion development

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Cellular immunity is the main defense mechanism in paracoccidioidomycosis (PCM), the most important systemic mycosis in Latin America. Th1 immunity and IFN-γ activated macrophages are fundamental to immunoprotection that is antagonized by IL-10, an anti-inflammatory cytokine. Both in human and experimental PCM, several evidences indicate that the suppressive effect of IL-10 causes detrimental effects to infected hosts. Because direct studies have not been performed, this study was aimed to characterize the function of IL-10 in pulmonary PCM. METHODOLOGY/PRINCIPAL FINDINGS: Wild type (WT) and IL-10(-/-) C57BL/6 mice were used to characterize the role of IL-10 in the innate and adaptive immunity against Paracoccidioides brasiliensis (Pb) infection. We verified that Pb-infected peritoneal macrophages from IL-10(-/-) mice presented higher phagocytic and fungicidal activities than WT macrophages, and these activities were associated with elevated production of IFN-γ, TNF-α, nitric oxide (NO) and MCP-1. For in vivo studies, IL-10(-/-) and WT mice were i.t. infected with 1×10(6) Pb yeasts and studied at several post-infection periods. Compared to WT mice, IL-10(-/-) mice showed increased resistance to P. brasiliensis infection as determined by the progressive control of pulmonary fungal loads and total clearance of fungal cells from dissemination organs. This behavior was accompanied by enhanced delayed-type hypersensitivity reactions, precocious humoral immunity and controlled tissue pathology resulting in increased survival times. In addition, IL-10(-/-) mice developed precocious T cell immunity mediated by increased numbers of lung infiltrating effector/memory CD4(+) and CD8(+) T cells. The inflammatory reactions and the production of Th1/Th2/Th17 cytokines were reduced at late phases of infection, paralleling the regressive infection of IL-10(-/-) mice. CONCLUSIONS/SIGNIFICANCE: Our work demonstrates for the first time that IL-10 plays a detrimental effect to pulmonary PCM due to its suppressive effect on the innate and adaptive immunity resulting in progressive infection and precocious mortality of infected hosts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Apple consumption is highly recomended for a healthy diet and is the most important fruit produced in temperate climate regions. Unfortunately, it is also one of the fruit that most ofthen provoks allergy in atopic patients and the only treatment available up to date for these apple allergic patients is the avoidance. Apple allergy is due to the presence of four major classes of allergens: Mal d 1 (PR-10/Bet v 1-like proteins), Mal d 2 (Thaumatine-like proteins), Mal d 3 (Lipid transfer protein) and Mal d 4 (profilin). In this work new advances in the characterization of apple allergen gene families have been reached using a multidisciplinary approach. First of all, a genomic approach was used for the characterization of the allergen gene families of Mal d 1 (task of Chapter 1), Mal d 2 and Mal d 4 (task of Chapter 5). In particular, in Chapter 1 the study of two large contiguos blocks of DNA sequences containing the Mal d 1 gene cluster on LG16 allowed to acquire many new findings on number and orientation of genes in the cluster, their physical distances, their regulatory sequences and the presence of other genes or pseudogenes in this genomic region. Three new members were discovered co-localizing with the other Mal d 1 genes of LG16 suggesting that the complexity of the genetic base of allergenicity will increase with new advances. Many retrotranspon elements were also retrieved in this cluster. Due to the developement of molecular markers on the two sequences, the anchoring of the physical and the genetic map of the region has been successfully achieved. Moreover, in Chapter 5 the existence of other loci for the Thaumatine-like protein family in apple (Mal d 2.03 on LG4 and Mal d 2.02 on LG17) respect the one reported up to now was demonstred for the first time. Also one new locus for profilins (Mal d 4.04) was mapped on LG2, close to the Mal d 4.02 locus, suggesting a cluster organization for this gene family, as is well reported for Mal d 1 family. Secondly, a methodological approach was used to set up an highly specific tool to discriminate and quantify the expression of each Mal d 1 allergen gene (task of Chapter 2). In aprticular, a set of 20 Mal d 1 gene specific primer pairs for the quantitative Real time PCR technique was validated and optimized. As a first application, this tool was used on leaves and fruit tissues of the cultivar Florina in order to identify the Mal d 1 allergen genes that are expressed in different tissues. The differential expression retrieved in this study revealed a tissue-specificity for some Mal d 1 genes: 10/20 Mal d 1 genes were expressed in fruits and, indeed, probably more involved in the allergic reactions; while 17/20 Mal d 1 genes were expressed in leaves challenged with the fungus Venturia inaequalis and therefore probably interesting in the study of the plant defense mechanism. In Chapter 3 the specific expression levels of the 10 Mal d 1 isoallergen genes, found to be expressed in fruits, were studied for the first time in skin and flesh of apples of different genotypes. A complex gene expression profile was obtained due to the high gene-, tissue- and genotype-variability. Despite this, Mal d 1.06A and Mal d 1.07 expression patterns resulted particularly associated with the degree of allergenicity of the different cultivars. They were not the most expressed Mal d 1 genes in apple but here it was hypotized a relevant importance in the determination of allergenicity for both qualitative and quantitative aspects of the Mal d 1 gene expression levels. In Chapter 4 a clear modulation for all the 17 PR-10 genes tested in young leaves of Florina after challenging with the fungus V. inaequalis have been reported but with a peculiar expression profile for each gene. Interestingly, all the Mal d 1 genes resulted up-regulated except Mal d 1.10 that was down-regulated after the challenging with the fungus. The differences in direction, timing and magnitude of induction seem to confirm the hypothesis of a subfunctionalization inside the gene family despite an high sequencce and structure similarity. Moreover, a modulation of PR-10 genes was showed both in compatible (Gala-V. inaequalis) and incompatible (Florina-V. inaequalis) interactions contribute to validate the hypothesis of an indirect role for at least some of these proteins in the induced defense responses. Finally, a certain modulation of PR-10 transcripts retrieved also in leaves treated with water confirm their abilty to respond also to abiotic stress. To conclude, the genomic approach used here allowed to create a comprehensive inventory of all the genes of allergen families, especially in the case of extended gene families like Mal d 1. This knowledge can be considered a basal prerequisite for many further studies. On the other hand, the specific transcriptional approach make it possible to evaluate the Mal d 1 genes behavior on different samples and conditions and therefore, to speculate on their involvement on apple allergenicity process. Considering the double nature of Mal d 1 proteins, as apple allergens and as PR-10 proteins, the gene expression analysis upon the attack of the fungus created the base for unravel the Mal d 1 biological functions. In particular, the knowledge acquired in this work about the PR-10 genes putatively more involved in the specific Malus-V. inaequalis interaction will be helpful, in the future, to drive the apple breeding for hypo-allergenicity genotype without compromise the mechanism of response of the plants to stress conditions. For the future, the survey of the differences in allergenicity among cultivars has to be be thorough including other genotypes and allergic patients in the tests. After this, the allelic diversity analysis with the high and low allergenic cultivars on all the allergen genes, in particular on the ones with transcription levels correlated to allergencity, will provide the genetic background of the low ones. This step from genes to alleles will allow the develop of molecular markers for them that might be used to effectively addressed the apple breeding for hypo-allergenicity. Another important step forward for the study of apple allergens will be the use of a specific proteomic approach since apple allergy is a multifactor-determined disease and only an interdisciplinary and integrated approach can be effective for its prevention and treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cytochrome P450 1A1 (CYP1A1) monooxygenase plays an important role in the metabolism of environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) and halogenated polycyclic aromatic hydrocarbons (HAHs). Oxidation of these compounds converts them to the metabolites that subsequently can be conjugated to hydrophilic endogenous entities e.g. glutathione. Derivates generated in this way are water soluble and can be excreted in bile or urine, which is a defense mechanism. Besides detoxification, metabolism by CYP1A1 may lead to deleterious effects since the highly reactive intermediate metabolites are able to react with DNA and thus cause mutagenic effects, as it is in the case of benzo(a) pyrene (B[a]P). CYP1A1 is normally not expressed or expressed at a very low level in the cells but it is inducible by many PAHs and HAHs e.g. by B[a]P or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Transcriptional activation of the CYP1A1 gene is mediated by aryl hydrocarbon receptor (AHR), a basic-helix-loop-helix (bHLH) transcription factor. In the absence of a ligand AHR stays predominantly in the cytoplasm. Ligand binding causes translocation of AHR to the nuclear compartment, its heterodimerization with another bHLH protein, the aryl hydrocarbon nuclear translocator (ARNT) and binding of the AHR/ARNT heterodimer to a DNA motif designated dioxin responsive element (DRE). This process leads to the transcriptional activation of the responsive genes containing DREs in their regulatory regions, e.g. that coding for CYP1A1. TCDD is the most potent known agonist of AHR. Since it is not metabolized by the activated enzymes, exposure to this compound leads to a persisting activation of AHR resulting in diverse toxic effects in the organism. To enlighten the molecular mechanisms that mediate the toxicity of xenobiotics like TCDD and related compounds, the AHR-dependent regulation of the CYP1A1 gene was investigated in two cell lines: human cervix carcinoma (HeLa) and mouse hepatoma (Hepa). Study of AHR activation and its consequence concerning expression of the CYP1A1 enzyme confirmed the TCDD-dependent formation of the AHR/ARNT complex on DRE leading to an increase of the CYP1A1 transcription in Hepa cells. In contrast, in HeLa cells formation of the AHR/ARNT heterodimer and binding of a protein complex containing AHR and ARNT to DRE occurred naturally in the absence of TCDD. Moreover, treatment with TCDD did not affect the AHR/ARNT dimer formation and binding of these proteins to DRE in these cells. Even though the constitutive complex on DRE exists in HeLa, transcription of the CYP1A1 gene was not increased. Furthermore, the CYP1A1 level in HeLa cells remained unchanged in the presence of TCDD suggesting repressional mechanism of the AHR complex function which may hinder the TCDD-dependent mechanisms in these cells. Similar to the native, the mouse CYP1A1-driven reporter constructs containing different regulatory elements were not inducible by TCDD in HeLa cells, which supported a presence of cell type specific trans-acting factor in HeLa cells able to repress both the native CYP1A1 and CYP1A1-driven reporter genes rather than species specific differences between CYP1A1 genes of human and rodent origin. The different regulation of the AHR-mediated transcription of CYP1A1 gene in Hepa and HeLa cells was further explored in order to elucidate two aspects of the AHR function: (I) mechanism involved in the activation of AHR in the absence of exogenous ligand and (II) factor that repress function of the exogenous ligand-independent AHR/ARNT complex. Since preliminary studies revealed that the activation of PKA causes an activation of AHR in Hepa cells in the absence of TCDD, the PKA-dependent signalling pathway was the proposed endogenous mechanism leading to the TCDD-independent activation of AHR in HeLa cells. Activation of PKA by forskolin or db-cAMP as well as inhibition of the kinase by H89 in both HeLa and Hepa cells did not lead to alterations in the AHR interaction with ARNT in the absence of TCDD and had no effect on binding of these proteins to DRE. Moreover, the modulators of PKA did not influence the CYP1A1 activity in these cells in the presence and in the absence of TCDD. Thus, an involvement of PKA in the regulation of the CYP1A1 Gen in HeLa cells was not evaluated in the course of this study. Repression of genes by transcription factors bound to their responsive elements in the absence of ligands has been described for nuclear receptors. These receptors interact with protein complex containing histone deacetylase (HDAC), enzyme responsible for the repressional effect. Thus, a participation of histone deacetylase in the transcriptional modulation of CYP1A1 gene by the constitutively DNA-bound AHR/ARNT complex was supposed. Inhibition of the HDAC activity by trichostatin A (TSA) or sodium butyrate (NaBu) led to an increase of the CYP1A1 transcription in the presence but not in the absence of TCDD in Hepa and HeLa cells. Since amount of the AHR and ARNT proteins remained unchanged upon treatment of the cells with TSA or NaBu, the transcriptional upregulation of CYP1A1 gene was not due to an increased expression of the regulatory proteins. These findings strongly suggest an involvement of HDAC in the repression of the CYP1A1 gene. Similar to the native human CYP1A1 also the mouse CYP1A1-driven reporter gene transfected into HeLa cells was repressed by histone deacetylase since the presence of TSA or NaBu led to an increase in the reporter activity. Induction of reporter gene did not require a presence of the promoter or negative regulatory regions of the CYP1A1 gene. A promoter-distal fragment containing three DREs together with surrounding sequences was sufficient to mediate the effects of the HDAC inhibitors suggesting that the AHR/ARNT binding to its specific DNA recognition site may be important for the CYP1A1 repression. Histone deacetylase is recruited to the specific genes by corepressors, proteins that bind to the transcription factors and interact with other members of the HDAC complex. Western blot analyses revealed a presence of HDAC1 and the corepressors mSin3A (mammalian homolog of yeast Sin3) and SMRT (silencing mediator for retinoid and thyroid hormone receptor) in both cell types, while the corepressor NCoR (nuclear receptor corepressor) was expressed exclusively in HeLa cells. Thus the high inducibility of CYP1A1 in Hepa cells may be due to the absence of NCoR in these cells in contrast to the non-responsive HeLa cells, where the presence of NCoR would support repression of the gene by histone deacetylase. This hypothesis was verified in reporter gene experiments where expression constructs coding for the particular members of the HDAC complex were cotransfected in Hepa cells together with the TCDD-inducible reporter constructs containing the CYP1A1 regulatory sequences. An overexpression of NCoR however did not decrease but instead led to a slight increase of the reporter gene activity in the cells. The expected inhibition was observed solely in the case of SMRT that slightly reduced constitutive and TCDD-induced reporter gene activity. A simultaneous expression of NCoR and SMRT shown no further effects and coexpression of HDAC1 with the two corepressors did not alter this situation. Thus, additional factors that are likely involved in the repression of CYP1A1 gene by HDAC complex remained to be identified. Taking together, characterisation of an exogenous ligand independent AHR/ARNT complex on DRE in HeLa cells that repress transcription of the CYP1A1 gene creates a model system enabling investigation of endogenous processes involved in the regulation of AHR function. This study implicates HDAC-mediated repression of CYP1A1 gene that contributes to the xenobiotic-induced expression in a tissue specific manner. Elucidation of these processes gains an insight into mechanisms leading to deleterious effects of TCDD and related compounds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Survivin, a unique member of the family of inhibitors of apoptosis (IAP) proteins, orchestrates intracellular pathways during cell division and apoptosis. Its central regulatory function in vertebrate molecular pathways as mitotic regulator and inhibitor of apoptotic cell death has major implications for tumor cell proliferation and viability, and has inspired several approaches that target survivin for cancer therapy. Analyses in early-branching Metazoa so far propose an exclusive role of survivin as a chromosomal passenger protein, whereas only later during evolution the second, complementary antiapoptotic function might have arisen, concurrent with increased organismal complexity. To lift the veil on the ancestral function(s) of this key regulatory molecule, a survivin homologue of the phylogenetically oldest extant metazoan taxon (phylum Porifera) was identified and functionally characterized. SURVL of the demosponge Suberites domuncula shares significant similarities with its metazoan homologues, ranging from conserved exon/intron structures to the presence of localization signal and protein-interaction domains, characteristic of IAP proteins. Whereas sponge tissue displayed a very low steady-state level, SURVL expression was significantly up-regulated in rapidly proliferating primmorph cells. In addition, challenge of sponge tissue and primmorphs with cadmium and the lipopeptide Pam3Cys-Ser-(Lys)4 stimulated SURVL expression, concurrent with the expression of newly discovered poriferan caspases (CASL and CASL2). Complementary functional analyses in transfected HEK-293 revealed that heterologous expression of poriferan survivin in human cells not only promotes cell proliferation but also augments resistance to cadmium-induced cell death. Taken together, these results demonstrate both a deep evolutionary conserved and fundamental dual role of survivin, and an equally conserved central position of this key regulatory molecule in interconnected pathways of cell cycle and apoptosis. Additionally, SDCASL, SDCASL2, and SDTILRc (TIR-LRR containing protein) may represent new components of the innate defense sentinel in sponges. SDCASL and SDCASL2 are two new caspase-homolog proteins with a singular structure. In addition to their CASc domains, SDCASL and SDCASL2 feature a small prodomain NH2-terminal (effector caspases) and a remarkably long COOH-terminal domain containing one or several functional double stranded RNA binding domains (dsrm). This new caspase prototype can characterize a caspase specialization coupling pathogen sensing and apoptosis, and could represent a very efficient defense mechanism. SDTILRc encompasses also a unique combination of domains: several leucine rich repeats (LRR) and a Toll/IL-1 receptor (TIR) domain. This unusual domain association may correspond to a new family of intracellular sensing protein, forming a subclass of pattern recognition receptors (PRR).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Komplementdefizienzen gehen mit einer erhöhten Infektionsanfälligkeit gegenüber bestimmten Krankheitserregern in den ersten Lebensjahren (MBL-Defizienz) und darüber hinaus (C1q- und anderen Komplementdefizienten) einher. Dies unterstreicht die Rolle des Komplementsystems als effektiver Abwehrmechanismus in der Übergangsphase zwischen Verlust des „mütterlichen Nestschutzes“ und Ausreifung der eigenen „erworbenen“ Immunität. Das Auftreten von Autoimmunerkrankungen wie dem SLE-ähnlichen Syndrom bei Defizienzen des Klassischen Weges beleuchten zusätzliche Funktionen des Komplementsystems während der Ausreifung der erworbenen Immunität und als wesentlicher Effektor in der Erkennung apoptotischer Zellen und deren Eliminierung aus dem System.rnHereditäre C1q-Defizienzen gehen mit einer hohen Wahrscheinlichkeit mit einem SLE-ähnlichen Syndrom einher. Sie stellen unter den Defizienzen des Komplementsystems eines Seltenheit dar, ihr klinisches „Gesicht“ ist umso eindrucksvoller. Sie sind von der funktionellen C1q-Defizienz im Rahmen eines erhöhten „turnover“ und in der Folge einer C1q-Autoantokörperbildung abzugrenzen. Ursächlich ist ihnen eine Mutation in einem der drei C1q-Gene, die auf dem Chromosom 1 lokalisiert sind. Homozygote Mutationsträger können den Defekt nicht ausgleichen und zeigen eine C1q-Defizienz mit Verlust der gesamthämolytischen Aktivität CH50. Häufungen treten bei Nachkommen von Geschwister- und Verwandtschaftsehen auf.rnrnIn dieser Arbeit wird der Fall einer Patientin mit einem schweren, frühkindlich einsetzenden, SLE-ähnlichen Syndrom aufgearbeitet. Als Ursache für eine Erkrankung konnte ein hereditärer C1q-Defekt, ohne immunologischem Nachweis eines C1q oer LMQ-C1q, identifiziert werden. Da sich keine der vorab beschriebenen Mutatonsmuster bei der Patientin detektieren ließ, erfolgte die Sequenzierung aller drei C1q-Gene. Dadurch ließ sich ein neues Mutationsmuster darstellen.rnrnDie in dieser Arbeit vorgestellte Mutation unterscheidet sich von den bislang beschriebenen Mutationen dadurch, dass es sich nicht um eine Punktmutation, sonder um eine Deletion von 29 Basen (c283_311) im Exon 2 des C1q-B-Ketten-Gens mit einhergehendem Rasterschub und vorzeitigem Stop-Codon (pMet95TrpfsX8) handelt. Durch die Analyse der Eltern und Geschwister der betroffenen Patientin konnte der Vererbungsweg dargestellt werden. Zudem gelang es die Mutation im Rahmen einer Pränataldiagnostik bei einem „ungeborenen“ Geschwisterkind auszuschließen.rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Farnesoid X receptor (FXR) is a nuclear receptor that regulates genes involved in synthesis, metabolism, and transport of bile acids and thus plays a major role in maintaining bile acid homeostasis. In this study, metabolomic responses were investigated in urine of wild-type and Fxr-null mice fed cholic acid, an FXR ligand, using ultra-performance liquid chromatography (UPLC) coupled with electrospray time-of-flight mass spectrometry (TOFMS). Multivariate data analysis between wild-type and Fxr-null mice on a cholic acid diet revealed that the most increased ions were metabolites of p-cresol (4-methylphenol), corticosterone, and cholic acid in Fxr-null mice. The structural identities of the above metabolites were confirmed by chemical synthesis and by comparing retention time (RT) and/or tandem mass fragmentation patterns of the urinary metabolites with the authentic standards. Tauro-3alpha,6,7alpha,12alpha-tetrol (3alpha,6,7alpha,12alpha-tetrahydroxy-5beta-cholestan-26-oyltaurine), one of the most increased metabolites in Fxr-null mice on a CA diet, is a marker for efficient hydroxylation of toxic bile acids possibly through induction of Cyp3a11. A cholestatic model induced by lithocholic acid revealed that enhanced expression of Cyp3a11 is the major defense mechanism to detoxify cholestatic bile acids in Fxr-null mice. These results will be useful for identification of biomarkers for cholestasis and for determination of adaptive molecular mechanisms in cholestasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the majority of cells, the integrity of the plasmalemma is recurrently compromised by mechanical or chemical stress. Serum complement or bacterial pore-forming toxins can perforate the plasma membrane provoking uncontrolled Ca(2+) influx, loss of cytoplasmic constituents and cell lysis. Plasmalemmal blebbing has previously been shown to protect cells against bacterial pore-forming toxins. The activation of the P2X7 receptor (P2X7R), an ATP-gated trimeric membrane cation channel, triggers Ca(2+) influx and induces blebbing. We have investigated the role of the P2X7R as a regulator of plasmalemmal protection after toxin-induced membrane perforation caused by bacterial streptolysin O (SLO). Our results show that the expression and activation of the P2X7R furnishes cells with an increased chance of surviving attacks by SLO. This protective effect can be demonstrated not only in human embryonic kidney 293 (HEK) cells transfected with the P2X7R, but also in human mast cells (HMC-1), which express the receptor endogenously. In addition, this effect is abolished by treatment with blebbistatin or A-438079, a selective P2X7R antagonist. Thus blebbing, which is elicited by the ATP-mediated, paracrine activation of the P2X7R, is part of a cellular non-immune defense mechanism. It pre-empts plasmalemmal damage and promotes cellular survival. This mechanism is of considerable importance for cells of the immune system which carry the P2X7R and which are specifically exposed to toxin attacks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mucus clearance is an important airway innate defense mechanism. Airway-targeted overexpression of the epithelial Na(+) channel β-subunit [encoded by sodium channel nonvoltage gated 1, beta subunit (Scnn1b)] in mice [Scnn1b-transgenic (Tg) mice] increases transepithelial Na(+) absorption and dehydrates the airway surface, which produces key features of human obstructive lung diseases, including mucus obstruction, inflammation, and air-space enlargement. Because the first Scnn1b-Tg mice were generated on a mixed background, the impact of genetic background on disease phenotype in Scnn1b-Tg mice is unknown. To explore this issue, congenic Scnn1b-Tg mice strains were generated on C57BL/6N, C3H/HeN, BALB/cJ, and FVB/NJ backgrounds. All strains exhibited a two- to threefold increase in tracheal epithelial Na(+) absorption, and all developed airway mucus obstruction, inflammation, and air-space enlargement. However, there were striking differences in neonatal survival, ranging from 5 to 80% (FVB/NJ

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Vedic philosophy deals with harmony and balance between the mind and the body as well as interactions with nature. This ancient approach to health and well-being is being more and more appreciated in part as we understand the intimate relationship between the immune system, our major defense mechanism and the nervous system. Like other organ systems, the immune system is dependent on the central nervous system (CNS) and the endocrine system in its role for effective defense against foreign and domestic invaders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Caenorhabditis elegans has recently been developed as a model system to study both pathogen virulence mechanisms and host defense responses. We have shown that C. elegans produces reactive oxygen species (ROS) in response to exposure to the important Gram-positive, noscomial pathogen, Enterococcus faecalis. We have also shown evidence of oxidative stress and upregulation of stress response after exposure to the pathogen. As in mammalian systems, this work shows that production of ROS for innate immune functions occurs via an NADPH oxidase. Specifically, reducing expression of a dual oxidase, Ce-duox1/BLI-3 causes a decrease in ROS production in response to E. faecalis. We also present evidence that reduction of expression of Ce-duox1/BLI-3 increases susceptibility to this pathogen, specifically when expression is reduced in the intestine and the hypodermis. This dual oxidase has previously been localized to the hypodermis, but we show that it is additionally localized to the intestine of C. elegans. To further demonstrate the protective effects of the pathogen-induced ROS production, we demonstrate that antioxidants that scavenge ROS, increase the sensitivity of the nematode to the infection, in stark contrast to their longevity-promoting effects under non-pathogenic conditions. In conclusion, we postulate that the generation of ROS by NADPH oxidases in the barrier epithelium is an ancient, highly conserved innate immune defense mechanism.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anthrax outbreaks in the United States and Europe and its potential use as a bioweapon have made Bacillus anthracis an interest of study. Anthrax infections are caused by the entry of B. anthracis spores into the host via the respiratory system, the gastrointestinal tract, cuts or wounds in the skin, and injection. Among these four forms, inhalational anthrax has the highest lethality rate and persistence of spores in the lungs of animals following pulmonary exposure has been noted for decades. However, details or mechanisms of spore persistence were not known. In this study, we investigated spore persistence in a mouse model. The results suggest that B. anthracis spores have special properties that promote persistence in the lung, and that there may be multiple mechanisms contributing to spore persistence. Moreover, recent discoveries from our laboratory suggest that spores evolved a sophisticated mechanism to interact with the host complement system. The complement system is a crucial part of the host defense mechanism against foreign microorganisms. Knowledge of the specific interactions that occur between the complement system and B. anthracis was limited. Studies performed in our laboratory have suggested that spores of B. anthracis can target specific proteins, such as Factor H (fH) of the complement system. Spores of B. anthracis are enclosed by an exosporium, which consists of a basal layer surrounded by a nap of hair-like filaments. The major structural component of the filaments is called Bacillus collagen-like protein of anthracis (BclA), which comprises a central collagen-like region and a globular C-terminal domain. BclA is the first point of contact with the innate system of an infected host. In this study, we investigated the molecular details of BclA-fH interaction with respect to the specific binding mechanism and the functional significance of this interaction in a murine model of anthrax infection. We hypothesized that the recruitment of fH to the spore surface by BclA limits the extent of complement activation and promotes pathogen survival and persistence in the infected host. Findings from this study are significant to understanding how to treat post-exposure prophylaxis and improve our knowledge of spores with the host immune system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La estructura urbana de Madrid comenzó a dibujarse con los primeros asentamientos fortificados del siglo IX. Sus posteriores ampliaciones estuvieron acotadas por los sucesivos recintos que delimitaron los contornos de una capital en constante expansión. De carácter inicialmente defensivo, luego fiscal y sanitario, estas estructuras estuvieron articuladas en torno a las puertas de acceso a la Villa, estableciendo un sistema general de cerramiento y comunicación que permitiera el control de personas y mercancías en su tránsito hacia el interior de la ciudad. La modestia inicial con que las puertas y tapias del recinto edificado en tiempos de Felipe IV desempeñaron sus funciones de espaldas al exterior de la Villa fue remplazada por un creciente protagonismo, de carácter simbólico y ornamental, que trascendió a su propia arquitectura para inspirar algunas de las importantes transformaciones urbanas operadas en su entorno. Relacionada principalmente con el ideal ilustrado de embellecimiento de la ciudad, la renovación de sus puertas principales se completaba con la reedificación y regularización de sus cercas, y la conformación de nuevos paseos en las afueras de la capital, cuyo trazado vertebrará en buena medida la ocupación de la periferia y la consiguiente definición de la trama urbana del Madrid de hoy. El presente trabajo de investigación indaga sobre la significación urbana de las Reales Puertas de la Villa de Madrid, a partir de la revisión de su establecimiento en los sucesivos recintos de la capital, con especial atención a las transformaciones urbanas operadas en ella desde la definición de su último límite hasta la proyección futura del Madrid ampliado según el anteproyecto de Carlos Mª de Castro. La observación conjunta de las componentes arquitectónica y urbana de las puertas de la Villa de Madrid se ofrece a partir de un relato cronológico de los hechos, fundamentado en su justificación documental y la secuencia visual registrada en la cartografía histórica de la ciudad. La incorporación de aportaciones gráficas de nueva elaboración, de carácter y alcance diversos, proporciona una superposición espacio-temporal que posibilita la lectura comparada de las arquitecturas de las Reales Puertas de la Villa de Madrid y de las transformaciones urbanas operadas a partir de ellas, determinantes en gran medida la configuración de la ciudad actual. ABSTRACT Madrid’s current urban structure has its roots in the first fortified settlements of the IX century. Its subsequent expansions due to the capital’s constant growth were limited by successive enclosures, built originally as a defense mechanism, but later used for fiscal and sanitary purposes as well. The construction of these structures pivoted around the gates that gave access to the city, establishing an enclosure that allowed control of both people and goods on their way into the city. The gates and walls originally built by Felipe IV performed their purpose with a modesty that was later replaced by an increasing symbolic and ornamental prominence, eventually surpassing their own architecture to inspire profound urban changes around them. With the purpose of embellishing the city, the main gates were renovated, the walls were rebuilt and standardized, and new avenues were laid out outside the city. These changes dictated in large part the settling on the suburbs and the resulting configuration of Madrid’s urban scene as we know it today. This research explores the urban significance of the Royal Gates of Madrid through the study of the enclosures that marked the limits of the city. Special attention is given to the urban changes since the last enclosure was established through to Carlos Mª de Castro’s draft for Madrid’s future projection. The architectonic and urban facets of Madrid’s gates are examined simultaneously in a series of chronological events, based on relevant documentation and the graphical record found in Madrid’s historic cartography. This thesis includes new graphic contributions, which allow the comparison of the architecture of the Royal Gates of Madrid as they evolved in time and space. These documents are essential in order to understand the urban transformations that took place based on the Gates, having largely determined the city’s current configuration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In transgenic and nontransgenic plants, viruses are both initiators and targets of a defense mechanism that is similar to posttranscriptional gene silencing (PTGS). Recently, it was found that potyviruses and cucumoviruses encode pathogenicity determinants that suppress this defense mechanism. Here, we test diverse virus types for the ability to suppress PTGS. Nicotiana benthamiana exhibiting PTGS of a green fluorescent protein transgene were infected with a range of unrelated viruses and various potato virus X vectors producing viral pathogenicity factors. Upon infection, suppression of PTGS was assessed in planta through reactivation of green fluorescence and confirmed by molecular analysis. These experiments led to the identification of three suppressors of PTGS and showed that suppression of PTGS is widely used as a counter-defense strategy by DNA and RNA viruses. However, the spatial pattern and degree of suppression varied extensively between viruses. At one extreme, there are viruses that suppress in all tissues of all infected leaves, whereas others are able to suppress only in the veins of new emerging leaves. This variation existed even between closely related members of the potexvirus group. Collectively, these results suggest that virus-encoded suppressors of gene silencing have distinct modes of action, are targeted against distinct components of the host gene-silencing machinery, and that there is dynamic evolution of the host and viral components associated with the gene-silencing mechanism.