844 resultados para Deep space optical communication
Resumo:
Atmospheric effects can significantly degrade the reliability of free-space optical communications. One such effect is scintillation, caused by atmospheric turbulence, refers to random fluctuations in the irradiance and phase of the received laser beam. In this paper we inv stigate the use of multiple lasers and multiple apertures to mitigate scintillation. Since the scintillation process is slow, we adopt a block fading channel model and study the outage probability under the assumptions of orthogonal pulse-position modulation and non-ideal photodetection. Assuming perfect receiver channel state information (CSI), we derive the signal-to-noise ratio (SNR) exponents for the cases when the scintillation is lognormal, exponential and gammagamma distributed, which cover a wide range of atmospheric turbulence conditions. Furthermore, when CSI is also available at the transmitter, we illustrate very large gains in SNR are possible (in some cases larger than 15 dB) by adapting the transmitted power. Under a long-term power constraint, we outline fundamental design criteria via a simple expression that relates the required number of lasers and apertures for a given code rate and number of codeword blocks to completely remove system outages. Copyright © 2009 IEEE.
Resumo:
RoFSO links are found to be susceptible to high-order laser distortion making conventional SFDR ineffective as a performance indicator. For the first time, peak input power is demonstrated as a service-independent bound on dynamic range. © OSA/ CLEO 2011.
Radio over free space optical link using a directly modulated two-electrode high power tapered laser
Resumo:
The analog modulation performance of a high-power two-electrode tapered laser is investigated. A 25dB dynamic range for 2.4GHz 802.11g signals is achieved with a 26dB loss budget, showing a >1km free space range is possible. © 2010 Optical Society of America.
Resumo:
Proceeding from the consideration of the demands from the functional architecture of high speed, high capacity optical communication network, this paper points out that photonic integrated devices, including high speed response laser source, narrow band response photodetector high speed wavelength converter, dense wavelength multi/demultiplexer, low loss high speed response photo-switch and multi-beam coupler are the key components in the system. The, investigation progress in the laboratory will be introduced.
Resumo:
A parallel optical communication subsystem based on a 12 channels parallel optical transmitter module and a 12 channels parallel optical receiver module can be used as a 10Gbps STM-64 or an OC-192 optical transponder. The bit error rate of this parallel optical communication subsystem is about 0 under the test by SDH optical transport tester during three hours and eighteen minutes.
Resumo:
A monolithic silicon CMOS optoelectronic integrated circuit (OEIC) was designed and fabricated with standard 0.6 mu m CMOS technology. This OEIC circuit consisted of an integrated double photodiode detector (DPD) and a preamplifier. The DPD detector exhibited high bandwidth by screening the bulk-generated diffusion carriers and suppressing the slow diffusion tail effect. The preamplifier exploited the regulated cascode (RGC) configuration as the input stage of receiver, thus isolating the influence of photodiode capacitance and input parasitic capacitance on bandwidth. Testing results showed that the bandwidth of OEIC was 700MHz, indicating the bit rate of 1Gb/s was achieved.
Resumo:
A fundamental understanding of the information carrying capacity of optical channels requires the signal and physical channel to be modeled quantum mechanically. This thesis considers the problems of distributing multi-party quantum entanglement to distant users in a quantum communication system and determining the ability of quantum optical channels to reliably transmit information. A recent proposal for a quantum communication architecture that realizes long-distance, high-fidelity qubit teleportation is reviewed. Previous work on this communication architecture is extended in two primary ways. First, models are developed for assessing the effects of amplitude, phase, and frequency errors in the entanglement source of polarization-entangled photons, as well as fiber loss and imperfect polarization restoration, on the throughput and fidelity of the system. Second, an error model is derived for an extension of this communication architecture that allows for the production and storage of three-party entangled Greenberger-Horne-Zeilinger states. A performance analysis of the quantum communication architecture in qubit teleportation and quantum secret sharing communication protocols is presented. Recent work on determining the channel capacity of optical channels is extended in several ways. Classical capacity is derived for a class of Gaussian Bosonic channels representing the quantum version of classical colored Gaussian-noise channels. The proof is strongly mo- tivated by the standard technique of whitening Gaussian noise used in classical information theory. Minimum output entropy problems related to these channel capacity derivations are also studied. These single-user Bosonic capacity results are extended to a multi-user scenario by deriving capacity regions for single-mode and wideband coherent-state multiple access channels. An even larger capacity region is obtained when the transmitters use non- classical Gaussian states, and an outer bound on the ultimate capacity region is presented
Resumo:
In this thesis a novel transmission format, named Coherent Wavelength Division Multiplexing (CoWDM) for use in high information spectral density optical communication networks is proposed and studied. In chapter I a historical view of fibre optic communication systems as well as an overview of state of the art technology is presented to provide an introduction to the subject area. We see that, in general the aim of modern optical communication system designers is to provide high bandwidth services while reducing the overall cost per transmitted bit of information. In the remainder of the thesis a range of investigations, both of a theoretical and experimental nature are carried out using the CoWDM transmission format. These investigations are designed to consider features of CoWDM such as its dispersion tolerance, compatibility with forward error correction and suitability for use in currently installed long haul networks amongst others. A high bit rate optical test bed constructed at the Tyndall National Institute facilitated most of the experimental work outlined in this thesis and a collaboration with France Telecom enabled long haul transmission experiments using the CoWDM format to be carried out. An amount of research was also carried out on ancillary topics such as optical comb generation, forward error correction and phase stabilisation techniques. The aim of these investigations is to verify the suitability of CoWDM as a cost effective solution for use in both current and future high bit rate optical communication networks
Resumo:
We propose the inverse Gaussian distribution, as a less complex alternative to the classical log-normal model, to describe turbulence-induced fading in free-space optical (FSO) systems operating in weak turbulence conditions and/or in the presence of aperture averaging effects. By conducting goodness of fit tests, we define the range of values of the scintillation index for various multiple-input multiple-output (MIMO) FSO configurations, where the two distributions approximate each other with a certain significance level. Furthermore, the bit error rate performance of two typical MIMO FSO systems is investigated over the new turbulence model; an intensity-modulation/direct detection MIMO FSO system with Q-ary pulse position modulation that employs repetition coding at the transmitter and equal gain combining at the receiver, and a heterodyne MIMO FSO system with differential phase-shift keying and maximal ratio combining at the receiver. Finally, numerical results are presented that validate the theoretical analysis and provide useful insights into the implications of the model parameters on the overall system performance. © 2011 IEEE.
Resumo:
Información, con actividades, para los jóvenes lectores interesados en explorar los diferentes astros y cómo han avanzado las técnicas para la exploración del espacio. Además de las fotografías,los niños descubrirán una amplia gama de temas. Incluye ilustraciones con dibujos animados, pasatiempos y preguntas con respuestas.
Resumo:
This paper deals with the design of optimal multiple gravity assist trajectories with deep space manoeuvres. A pruning method which considers the sequential nature of the problem is presented. The method locates feasible vectors using local optimization and applies a clustering algorithm to find reduced bounding boxes which can be used in a subsequent optimization step. Since multiple local minima remain within the pruned search space, the use of a global optimization method, such as Differential Evolution, is suggested for finding solutions which are likely to be close to the global optimum. Two case studies are presented.