871 resultados para Decoupling and matching networks
Resumo:
This document represents a doctoral thesis held under the Brazilian School of Public and Business Administration of Getulio Vargas Foundation (EBAPE/FGV), developed through the elaboration of three articles. The research that resulted in the articles is within the scope of the project entitled “Windows of opportunities and knowledge networks: implications for catch-up in developing countries”, funded by Support Programme for Research and Academic Production of Faculty (ProPesquisa) of Brazilian School of Public and Business Administration (EBAPE) of Getulio Vargas Foundation.
Resumo:
The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.
Resumo:
Most face recognition approaches require a prior training where a given distribution of faces is assumed to further predict the identity of test faces. Such an approach may experience difficulty in identifying faces belonging to distributions different from the one provided during the training. A face recognition technique that performs well regardless of training is, therefore, interesting to consider as a basis of more sophisticated methods. In this work, the Census Transform is applied to describe the faces. Based on a scanning window which extracts local histograms of Census Features, we present a method that directly matches face samples. With this simple technique, 97.2% of the faces in the FERET fa/fb test were correctly recognized. Despite being an easy test set, we have found no other approaches in literature regarding straight comparisons of faces with such a performance. Also, a window for further improvement is presented. Among other techniques, we demonstrate how the use of SVMs over the Census Histogram representation can increase the recognition performance.
Resumo:
This paper presents a non-model based technique to detect, locate, and characterize structural damage by combining the impedance-based structural health monitoring technique with an artificial neural network. The impedance-based structural health monitoring technique, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations (typically>30 kHz), this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors. In order to quantitatively assess the state of structures, two sets of artificial neural networks, which utilize measured electrical impedance signals for input patterns, were developed. By employing high frequency ranges and by incorporating neural network features, this technique is able to detect the damage in its early stage and to estimate the nature of damage without prior knowledge of the model of structures. The paper concludes with an experimental example, an investigation on a massive quarter scale model of a steel bridge section, in order to verify the performance of this proposed methodology.
Resumo:
A performance comparison between a recently proposed novel technique known as fast orthogonal frequency-division multiplexing (FOFDM) and conventional orthogonal frequency-division multiplexing (OFDM) is undertaken over unamplified, intensity-modulated, and direct-detected directly modulated laser-based optical signals. Key transceiver parameters, such as the maximum achievable transmission capacity and the digital-to-analog/analog-to-digital converter (DAC/ADC) effects are explored thoroughly. It is shown that, similarly to conventional OFDM, the least complex and bandwidth efficient FOFDM can support up to similar to 20 Gb/s over 500 m worst-case multimode fiber (MMF) links having 3 dB effective bandwidths of similar to 200 MHz X km. For compensation of the DAC/ADC roll-off, a power-loading (PL) algorithm is adopted, leading to an FOFDM system improvement of similar to 4 dB. FOFDM and conventional OFDM give similar optimum DAC/ADC parameters over 500 m worst-case MMF, while over 50 km single-mode fiber a maximum deviation of only similar to 1 dB in clipping ratio is observed due to the imperfect chromatic dispersion compensation caused by one-tap equalizers.
Resumo:
This paper presents a new non-destructive testing (NDT) for reinforced concrete structures, in order to identify the components of their reinforcement. A time varying electromagnetic field is generated close to the structure by electromagnetic devices specially designed for this purpose. The presence of ferromagnetic materials (the steel bars of the reinforcement) immersed in the concrete disturbs the magnetic field at the surface of the structure. These field alterations are detected by sensors coils placed on the concrete surface. Variations in position and cross section (the size) of steel bars immersed in concrete originate slightly different values for the induced voltages at the coils.. The values for the induced voltages were obtained in laboratory tests, and multi-layer perceptron artificial neural networks with Levemberg-Marquardt training algorithm were used to identify the location and size of the bar. Preliminary results can be considered very good.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We investigate the flux penetration patterns and matching fields of a long cylindrical wire of circular cross section in the presence of an external magnetic field. For this study we write the London theory for a long cylinder both for the mixed and Meissner states, with boundary conditions appropriate for this geometry. Using the Monte Carlo simulated annealing method, the free energy of the mixed state is minimized with respect to the vortex position and we obtain the ground state of the vortex lattice for N=3 up to 18 vortices. The free energy of the Meissner and mixed states provides expressions for the matching fields. We find that, as in the case of samples of different geometry, the finite-size effect provokes a delay on the vortex penetration and a vortex accumulation in the center of the sample. The vortex patterns obtained are in good agreement with experimental results.
Resumo:
Nowadays there is great interest in damage identification using non destructive tests. Predictive maintenance is one of the most important techniques that are based on analysis of vibrations and it consists basically of monitoring the condition of structures or machines. A complete procedure should be able to detect the damage, to foresee the probable time of occurrence and to diagnosis the type of fault in order to plan the maintenance operation in a convenient form and occasion. In practical problems, it is frequent the necessity of getting the solution of non linear equations. These processes have been studied for a long time due to its great utility. Among the methods, there are different approaches, as for instance numerical methods (classic), intelligent methods (artificial neural networks), evolutions methods (genetic algorithms), and others. The characterization of damages, for better agreement, can be classified by levels. A new one uses seven levels of classification: detect the existence of the damage; detect and locate the damage; detect, locate and quantify the damages; predict the equipment's working life; auto-diagnoses; control for auto structural repair; and system of simultaneous control and monitoring. The neural networks are computational models or systems for information processing that, in a general way, can be thought as a device black box that accepts an input and produces an output. Artificial neural nets (ANN) are based on the biological neural nets and possess habilities for identification of functions and classification of standards. In this paper a methodology for structural damages location is presented. This procedure can be divided on two phases. The first one uses norms of systems to localize the damage positions. The second one uses ANN to quantify the severity of the damage. The paper concludes with a numerical application in a beam like structure with five cases of structural damages with different levels of severities. The results show the applicability of the presented methodology. A great advantage is the possibility of to apply this approach for identification of simultaneous damages.
Resumo:
The use of sensorless technologies is an increasing tendency on industrial drivers for electrical machines. The estimation of electrical and mechanical parameters involved with the electrical machine control is used very frequently in order to avoid measurement of all variables related to this process. The cost reduction may also be considered in industrial drivers, besides the increasing robustness of the system, as an advantage of the use of sensorless technologies. This work proposes the use of a recurrent artificial neural network to estimate the speed of induction motor for sensorless control schemes using one single current sensor. Simulation and experimental results are presented to validate the proposed approach. ©2008 IEEE.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Grinding is a parts finishing process for advanced products and surfaces. However, continuous friction between the workpiece and the grinding wheel causes the latter to lose its sharpness, thus impairing the grinding results. This is when the dressing process is required, which consists of sharpening the worn grains of the grinding wheel. The dressing conditions strongly affect the performance of the grinding operation; hence, monitoring them throughout the process can increase its efficiency. The objective of this study was to estimate the wear of a single-point dresser using intelligent systems whose inputs were obtained by the digital processing of acoustic emission signals. Two intelligent systems, the multilayer perceptron and the Kohonen neural network, were compared in terms of their classifying ability. The harmonic content of the acoustic emission signal was found to be influenced by the condition of dresser, and when used to feed the neural networks it is possible to classify the condition of the tool under study.