953 resultados para DYNAMICAL PARAMETER
Resumo:
We show a function that fits well the probability density of return times between two consecutive visits of a chaotic trajectory to finite size regions in phase space. It deviates from the exponential statistics by a small power-law term, a term that represents the deterministic manifestation of the dynamics. We also show how one can quickly and easily estimate the Kolmogorov-Sinai entropy and the short-term correlation function by realizing observations of high probable returns. Our analyses are performed numerically in the Henon map and experimentally in a Chua's circuit. Finally, we discuss how our approach can be used to treat the data coming from experimental complex systems and for technological applications. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3263943]
Resumo:
We analyze the breaking of Lorentz invariance in a 3D model of fermion fields self-coupled through four-fermion interactions. The low-energy limit of the theory contains various submodels which are similar to those used in the study of graphene or in the description of irrational charge fractionalization.
Resumo:
In a 4D chiral Thirring model we analyze the possibility that radiative corrections may produce spontaneous breaking of Lorentz and CPT symmetry. By studying the effective potential, we verified that the chiral current (psi) over bar gamma(mu)gamma(5)psi may assume a nonzero vacuum expectation value which triggers Lorentz and CPT violations. Furthermore, by making fluctuations on the minimum of the potential we dynamically induce a bumblebee-like model containing a Chem-Simons term.
Resumo:
We discuss the intriguing possibility that dark energy may change its equation of state in situations where large dark energy fluctuations are present. We show indications of this dynamical mutation in some generic models of dark energy.
Resumo:
The addition of transition metals to III-V semiconductors radically changes their electronic, magnetic, and structural properties. We show by ab initio calculations that in contrast to the conventional semiconductor alloys, the lattice parameter in magnetic semiconductor alloys, including those with diluted concentration, strongly deviates from Vegard's law. We find a direct correlation between the magnetic moment and the anion-transition metal bond lengths and derive a simple and general formula that determines the lattice parameter of a particular magnetic semiconductor by considering both the composition and magnetic moment. This dependence can explain some experimentally observed anomalies and stimulate other kind of investigations.
Resumo:
The dynamical breaking of gauge symmetry in the supersymmetric quantum electrodynamics in three-dimensional spacetime is studied at two-loop approximation. At this level, the effective superpotential is evaluated in a supersymmetric phase. At one-loop order, we observe a generation of the Chern-Simons term due to a parity violating term present in the classical action. At two-loop order, the scalar background superfield acquires a nonvanishing vacuum expectation value, generating a mass term A(alpha)A(alpha) through the Coleman-Weinberg mechanism. It is observed that the mass of gauge superfield is predominantly an effect of the topological Chern-Simons term.
Resumo:
Chaotic dynamical systems with two or more attractors lying on invariant subspaces may, provided certain mathematical conditions are fulfilled, exhibit intermingled basins of attraction: Each basin is riddled with holes belonging to basins of the other attractors. In order to investigate the occurrence of such phenomenon in dynamical systems of ecological interest (two-species competition with extinction) we have characterized quantitatively the intermingled basins using periodic-orbit theory and scaling laws. The latter results agree with a theoretical prediction from a stochastic model, and also with an exact result for the scaling exponent we derived for the specific class of models investigated. We discuss the consequences of the scaling laws in terms of the predictability of a final state (extinction of either species) in an ecological experiment.
Resumo:
In this work we study the dynamical generation of mass in the massless N = 1 Wess-Zumino model in a three-dimensional spacetime. Using the tadpole method to compute the effective potential, we observe that supersymmetry is dynamically broken together with the discrete symmetry A(x) -> A(x). We show that this model, different from nonsupersymmetric scalar models, exhibits a consistent perturbative dynamical generation of mass after two-loop corrections to the effective potential.
Resumo:
We study the transport properties of ultrathin disordered nanowires in the neighborhood of the superconductor-metal quantum phase transition. To this end we combine numerical calculations with analytical strong-disorder renormalization group results. The quantum critical conductivity at zero temperature diverges logarithmically as a function of frequency. In the metallic phase, it obeys activated scaling associated with an infinite-randomness quantum critical point. We extend the scaling theory to higher dimensions and discuss implications for experiments.
Resumo:
We analyze the dynamical behavior of a quantum system under the actions of two counteracting baths: the inevitable energy draining reservoir and, in opposition, exciting the system, an engineered Glauber's amplifier. We follow the system dynamics towards equilibrium to map its distinctive behavior arising from the interplay of attenuation and amplification. Such a mapping, with the corresponding parameter regimes, is achieved by calculating the evolution of both the excitation and the Glauber-Sudarshan P function. Techniques to compute the decoherence and the fidelity of quantum states under the action of both counteracting baths, based on the Wigner function rather than the density matrix, are also presented. They enable us to analyze the similarity of the evolved state vector of the system with respect to the original one, for all regimes of parameters. Applications of this attenuation-amplification interplay are discussed.
Resumo:
In this work we analyze the dynamical Casimir effect for a massless scalar field confined between two concentric spherical shells considering mixed boundary conditions. We thus generalize a previous result in literature [Phys. Rev. A 78, 032521 (2008)], where the same problem is approached for the field constrained to the Dirichlet-Dirichlet boundary conditions. A general expression for the average number of particle creation is deduced considering an arbitrary law of radial motion of the spherical shells. This expression is then applied to harmonic oscillations of the shells, and the number of particle production is analyzed and compared with the results previously obtained under Dirichlet-Dirichlet boundary conditions.
Resumo:
In this work we consider the dynamical Casimir effect for a massless scalar field-under Dirichlet boundary conditions-between two concentric spherical shells. We obtain a general expression for the average number of particle creation, for an arbitrary law of radial motion of the spherical shells, using two distinct methods: by computing the density operator of the system and by calculating the Bogoliubov coefficients. We apply our general expression to breathing modes: when only one of the shells oscillates and when both shells oscillate in or out of phase. Since our results were obtained in the framework of the perturbation theory, under resonant breathing modes they are restricted to a short-time approximation. We also analyze the number of particle production and compare it with the results for the case of plane geometry.
Resumo:
We consider a polling model with multiple stations, each with Poisson arrivals and a queue of infinite capacity. The service regime is exhaustive and there is Jacksonian feedback of served customers. What is new here is that when the server comes to a station it chooses the service rate and the feedback parameters at random; these remain valid during the whole stay of the server at that station. We give criteria for recurrence, transience and existence of the sth moment of the return time to the empty state for this model. This paper generalizes the model, when only two stations accept arriving jobs, which was considered in [Ann. Appl. Probab. 17 (2007) 1447-1473]. Our results are stated in terms of Lyapunov exponents for random matrices. From the recurrence criteria it can be seen that the polling model with parameter regeneration can exhibit the unusual phenomenon of null recurrence over a thick region of parameter space.
Resumo:
The Random Parameter model was proposed to explain the structure of the covariance matrix in problems where most, but not all, of the eigenvalues of the covariance matrix can be explained by Random Matrix Theory. In this article, we explore the scaling properties of the model, as observed in the multifractal structure of the simulated time series. We use the Wavelet Transform Modulus Maxima technique to obtain the multifractal spectrum dependence with the parameters of the model. The model shows a scaling structure compatible with the stylized facts for a reasonable choice of the parameter values. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper proposes a three-stage offline approach to detect, identify, and correct series and shunt branch parameter errors. In Stage 1 the branches suspected of having parameter errors are identified through an Identification Index (II). The II of a branch is the ratio between the number of measurements adjacent to that branch, whose normalized residuals are higher than a specified threshold value, and the total number of measurements adjacent to that branch. Using several measurement snapshots, in Stage 2 the suspicious parameters are estimated, in a simultaneous multiple-state-and-parameter estimation, via an augmented state and parameter estimator which increases the V - theta state vector for the inclusion of suspicious parameters. Stage 3 enables the validation of the estimation obtained in Stage 2, and is performed via a conventional weighted least squares estimator. Several simulation results (with IEEE bus systems) have demonstrated the reliability of the proposed approach to deal with single and multiple parameter errors in adjacent and non-adjacent branches, as well as in parallel transmission lines with series compensation. Finally the proposed approach is confirmed on tests performed on the Hydro-Quebec TransEnergie network.