995 resultados para DRIVING BEHAVIOR
Resumo:
Organisms producing resting stages provide unique opportunities for reconstructing the genetic history of natural populations. Diapausing seeds and eggs often are preserved in large numbers, representing entire populations captured in an evolutionary inert state for decades and even centuries. Starting from a natural resting egg bank of the waterflea Daphnia, we compare the evolutionary rates of change in an adaptive quantitative trait with those in selectively neutral DNA markers, thus effectively testing whether the observed genetic changes in the quantitative trait are driven by natural selection. The population studied experienced variable and well documented levels of fish predation over the past 30 years and shows correlated genetic changes in phototactic behavior, a predator-avoidance trait that is related to diel vertical migration. The changes mainly involve an increased plasticity response upon exposure to predator kairomone, the direction of the changes being in agreement with the hypothesis of adaptive evolution. Genetic differentiation through time was an order of magnitude higher for the studied behavioral trait than for neutral markers (DNA microsatellites), providing strong evidence that natural selection was the driving force behind the observed, rapid, evolutionary changes.
Resumo:
Prolonged incubation of NIH 3T3 cells under the growth constraint of confluence results in the death of some cells in a manner suggestive of apoptosis. Successive rounds of prolonged incubation at confluence of the surviving cells produce increasing neoplastic transformation in the form of increments in saturation density and transformed focus formation. Cells from the postconfluent cultures are given a recovery period of various lengths to remove the direct inhibitory effect of confluence before their growth properties are studied. It is found that with each round of confluence the exponential growth rate of the cells at low densities gets lower and the size of isolated colonies of the same cells shows a similar progressive reduction. The decreased growth rate of cells from the third round of confluence persists for > 60 generations of growth at low density. The proportion of colonies containing giant cells is much higher after a 2-day recovery from confluence than after a 7-day recovery. Retardation of growth at low density and increased saturation density appear to be two sides of the same coin: both occur in the entire population of cells and precede the formation of transformed foci. We propose that the slowdown in growth and the formation of giant cells result from heritable damage to the cells, which in turn drives their transformation. Similar results have been reported for the survivors of x-irradiation and of treatment with chemical carcinogens and are associated with the aging process in animals. We suggest that these changes result from free radical damage to membrane lipids with particular damage to lysosomes. Proteases and nucleases would then be released to progressively modify the growth behavior and genetic stability of the cells toward autonomous proliferation.
Resumo:
For driving aptitude assessment (DAA), the analysis of several alcohol biomarkers is essential for the detection of alcohol intake besides psycho-medical exploration. In Switzerland, EtG in hair (hEtG) is often the only direct marker for abstinence monitoring in DAA. Therefore, the suitability of phosphatidylethanol (PEth) was investigated as additional biomarker. PEth 16:0/18:1 and 16:0/18:2 were determined by online-SPE-LC-MS/MS in 136 blood samples of persons undergoing DAA and compared to hEtG, determined in hair segments taken at the same time. With a PEth 16:0/18:1 threshold of 210 ng/mL for excessive alcohol consumption, all (n = 30) but one tested person also had hEtG values ≥30 pg/mg. In 54 cases, results are not in contradiction to an abstinence as neither PEth (<20 ng/mL) nor hEtG (<7 pg/mg) was detected. In eight cases, both markers showed moderate consumption. Altogether, PEth and hEtG were in accordance in 68 % of the samples, although covering different time periods of alcohol consumption. With receiver operating characteristic analysis, PEth was evaluated to differentiate abstinence, moderate, and excessive alcohol consumption in accordance with hEtG limits. A PEth 16:0/18:1 threshold of 150 ng/mL resulted in the best sensitivity (70.6 %) and specificity (98.8 %) for excessive consumption. Values between 20 and 150 ng/mL passed for moderate consumption, values <20 ng/mL passed for abstinence. As PEth mostly has a shorter detection window (2-4 weeks) than hEtG (up to 6 months depending on hair length), changes in drinking behavior can be detected earlier by PEth than by hEtG analysis alone. Therefore, PEth helps to improve the diagnostic information and is a valuable additional alcohol marker for DAA.
Resumo:
Federal Highway Administration, Office of Safety and Traffic Operations, Washington, D.C.
Resumo:
Texas State Department of Highways and Public Transportation, Transportation Planning Division, Austin
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Federal Highway Administration, Office of Safety and Traffic Operations Research and Development, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Office of Driver and Pedestrian Research, Washington, D.C.
Resumo:
Decreasing vehicle understeer was strongly associated with the likelihood of control loss following both the unexpected and expected tire failures. Knowledge of the imminent tread separation reduced the overall probability of control loss from 55% to 20% and had a significant effect on how quickly drivers responded as well as on the nature of their initial responses (i.e., steering orbraking). Driver age was marginally associated with increased likelihood of vehicle control loss, but only on unexpected trials. Vehicle speed at the time of first steering input also contributed to the probability of control loss. Neither the location of the tire that failed (left rear vs. right rear) nor the specific instructions about how best to respond to the tread separation influenced the probability of control loss. Differences associated with vehicle understeer conditions observed in the present study were large and consistent, independent of driver expectations and across driver age groups. It is thus fair to conclude that in the event of a complete rear-tire detread, the increased difficulty in vehicle handling and the associated increased likelihood of loss of vehicle control with decreasing vehicle understeer generalize to real-world driving.