997 resultados para DELTA-9-THC
Resumo:
Marijuana (Cannabis sativa L.) is the most cultivated, trafficked and consumed illicit drug worldwide. Estimates indicate 10% of individuals experiencing marijuana become daily users, and 20-30% use it weekly. Around 489 natural compounds have been identified in this plant, of which 70 are cannabinoids, responsible for psychic effects. The most relevant cannabinoid is Δ9-THC, recognized as the main chemical substance with psychoactive effects. The aims of this work was to investigate whether other drugs interfere with the colorimetric tests Fast Blue B and Duquenois-Levine, widely used for marijuana screening in forensic chemistry laboratories.
Consumo de sustancias y noxas prenatales en madres de pacientes con síndrome de Möbius y Möbius Like
Resumo:
Introducción: El síndrome de Möbius y Möbius Like es una entidad poco frecuente caracterizada principalmente por parálisis congénita del VI y VII par craneal. Su etiología es poco conocida aunque se ha asociado a inductores del aborto. El objetivo de este estudio es describir factores anómalos, tóxicos o nocivos que hayan estado presentes en el embarazo de las madres de estos pacientes. Metodología: se realizó una encuesta auto-diligenciable a 15 madres de pacientes con el diagnóstico, indagando sobre condiciones anómalas y/o exposicionales del embarazo, el padre y el ambiente. Resultados: Las madres se encontraban entre los 16 y 34 años al momento de quedar embarazadas, en su mayoría eran solteras, estudiantes y sin planes de embarazo. Once en total usaron algún medicamento y/o sustancias durante la gestación; seis de ellas Misoprostol (40%). Las otras sustancias utilizadas incluyeron: alternativas, cigarrillo, alcohol, ibuprofeno, anticonceptivos, otros. Como anomalías del periodo prenatal se reportaron sangrado activo y/o amenaza de aborto, infección, exposición a químicos ambientales y enfermedad materna activa. Las condiciones paternas descritas fueron alcoholismo y/o drogadicción, enfermedad y edad ≥ 40 años en bajo porcentaje. Conclusión: El síndrome de Möbius y Möbius Like es una patología poco frecuente de la cual aún se debe seguir investigando sobre su etiología, para plantear posibles medidas de prevención.
Resumo:
Background: Cannabinoids from cannabis (Cannabis sativa) are anti-inflammatory and have inhibitory effects on the proliferation of a number of tumorigenic cell lines, some of which are mediated via cannabinoid receptors. Cannabinoid (CB) receptors are present in human skin and anandamide, an endogenous CB receptor ligand, inhibits epidermal keratinocyte differentiation. Psoriasis is an inflammatory disease also characterised in part by epidermal keratinocyte hyper-proliferation. Objective: We investigated the plant cannabinoids Delta-9 tetrahydrocannabinol, cannabidiol, cannabinol and cannabigerol for their ability to inhibit the proliferation of a hyper-proliferating human keratinocyte cell line and for any involvement of cannabinoid receptors. Methods: A keratinocyte proliferation assay was used to assess the effect of treatment with cannabinoids. Cell integrity and metabolic competence confirmed using lactate-dehydrogenase and adenosine tri-phosphate assays. To determine the involvement of the receptors, specific agonist and antagonist were used in conjunction with some phytocannabinoids. Western blot and RT-PCR analysis confirmed presence of CB1 and CB2 receptors. Results: The cannabinoids tested all inhibited keratinocyte proliferation in a concentration-dependent manner. The selective CB2 receptor agonists JWH015 and BML190 elicited only partial inhibition, the non-selective CB agonist HU210 produced a concentration-dependent response, the activity of theses agonists were not blocked by either C81 /C82 antagonists. Conclusion: The results indicate that while CB receptors may have a circumstantial role in keratinocyte proliferation, they do not contribute significantly to this process. Our results show that cannabinoids inhibit keratinocyte proliferation, and therefore support a potential role for cannabinoids in the treatment of psoriasis. (c) 2006 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
The Cannabis sativa herb contains over 100 phytocannabinoid (pCB) compounds and has been used for thousands of years for both recreational and medicinal purposes. In the past two decades, characterisation of the body's endogenous cannabinoid (CB) (endocannabinoid, eCB) system (ECS) has highlighted activation of central CB1 receptors by the major pCB, Δ9-tetrahydrocannabinol (Δ9-THC) as the primary mediator of the psychoactive, hyperphagic and some of the potentially therapeutic properties of ingested cannabis. Whilst Δ9-THC is the most prevalent and widely studied pCB, it is also the predominant psychotropic component of cannabis, a property that likely limits its widespread therapeutic use as an isolated agent. In this regard, research focus has recently widened to include other pCBs including cannabidiol (CBD), cannabigerol (CBG), Δ9tetrahydrocannabivarin (Δ9-THCV) and cannabidivarin (CBDV), some of which show potential as therapeutic agents in preclinical models of CNS disease. Moreover, it is becoming evident that these non-Δ9-THC pCBs act at a wide range of pharmacological targets, not solely limited to CB receptors. Disorders that could be targeted include epilepsy, neurodegenerative diseases, affective disorders and the central modulation of feeding behaviour. Here, we review pCB effects in preclinical models of CNS disease and, where available, clinical trial data that support therapeutic effects. Such developments may soon yield the first non-Δ9-THC pCB-based medicines.
Resumo:
The analysis of the IR carbonyl band of the 2-substituted N-methoxy-N-methylacetamides Y-CH(2)C(O)-N(OMe)Me (Y = F1, OMe 2, OPh 3, Cl 4), supported by B3LYP/6-311++G(3df, 3pd) calculations along with the NBO analysis for 1-4, indicated the existence of cis-gauche conformers i.e. (c) and (g) for 1 and 3, (c(1), c(2)) and (g(1), g(2)) for 2, and (c) and (g(1), g(2)) for 4. In the gas phase, the g conformer population prevails over the c one, for 1 and 3, the (c(1) + c(2)) population prevails over the (g(1) + g(2)) one for 2, and the (g(1) + g(2)) conformer population is more abundant than (c) one for 4. In n-hexane solution, the cis conformer is more abundant for 1-3. The occurrence of Fermi resonance in the nu(CO) region, in n-hexane, precludes the estimative of relative populations of the (c, g(1), g(2)) conformers for 4. The SCI-PCM calculations agree with the solvent effect on the nu(CO) band component relative intensities for 1-3. NBO analysis showed that the n(N) -> pi.(CO), orbital interaction is the main factor which stabilizes the gauche (g, g(1), g(2)) conformers for 1-4 into a larger extent relative to the cis (c, c(1), c(2)) ones. The n(y) -> pi(.)(Co,) sigma(C-Y) -> pi.(CO,) pi(CO) -> sigma(C-Y) and 7co orbital interactions still contribute, but into a minor extent for the stabilization of the gauche conformers relative to the cis ones. The existence of some pyramidalization at the nitrogen atom of the Weinreb amides 1-4 is responsible for the occurrence of Y(delta)-(4)center dot center dot center dot O(delta)-(9) and Y(delta)-(4)center dot center dot center dot N(delta)-(7) short contacts in the gauche (g, g(1), g(2)) conformers, which originates strong repulsive Coulombic interactions, acting in opposition to the large orbital stabilization of the gauche conformer with respect to the cis one. Therefore, a delicate balance of the Coulombic and orbital interactions seems to be responsible for the observed stabilization of the gauche (g, g(1), g(2)) and cis (c, c(1), c(2)) conformers, both in the gas phase and in the solution for 1-4. However, the cis conformer predominance, in non polar solvents, for the 2-substituted N-methoxy-N-methyl acetamides 1-3, bearing in a first raw (fluorine and oxygen) atoms, is in the opposite direction to the gauche conformer preference for the corresponding 2-substituted N,N-dialkyl-acetamides. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of this study was to evaluate the fatty acid profile and qualitative characteristics of meat from feedlot young bulls fed ground soybean or ground cottonseed, with or without supplementation of vitamin E. A total of 40 Red Norte young bulls, with an initial average age of 20 months, and an initial average BW of 339 +/- 15 kg, were allotted in a completely randomized design using a 2 x 2 factorial arrangement, with two oilseeds, and daily supplementation or not of 2500 IU of vitamin E. The experimental period was for 84 days, which was preceded by an adaptation period of 28 days. The treatments were ground soybean (SB), ground soybean plus vitamin E (SBE), ground cottonseed (CS) and ground cottonseed plus vitamin E (CSE). The percentage of cottonseed and soybean in the diets (dry matter basis) was 24% and 20%, respectively. Diets were isonitrogenous (13% CP) and presented similar amount of ether extract (6.5%). The animals were slaughtered at average live weight of 464 +/- 15 kg, and samples were taken from the longissimus dorsi muscle for the measurement of fatty acid concentration and the evaluation of lipid oxidation and color of the beef. Before fatty acid extraction, muscle tissue and subcutaneous fat of the longissimus dorsi were separated to analyze fatty acid profile in both tissues. Supplementation of vitamin E did not affect fatty acid concentration, lipid oxidation and color (P > 0.05). Subcutaneous fat from animals fed CS diet had greater C12: 0, C16: 0 and C18: 0 contents (P < 0.03). In addition, CS diets reduced the C18: 1 and C18: 2 cis-9, trans-11 contents in subcutaneous fat (P < 0.05). The muscle from animals fed CS tended to higher C16: 0 and C18: 0 contents (P < 0.11), and decreased C18: 1, C18: 2 cis-9, trans-11 and C18: 3 contents (P < 0.05) compared with SB. The Delta(9)-desaturase index was greater in muscle from animals fed SB (P < 0.01). At 42 days of age, meat from cattle fed SB had a greater lipid oxidation rate (P < 0.05). Meat from animals fed SB diets had less lightness and redness indices than meat from animals fed CS diets after 14 days of age. In conclusion, the addition of ground cottonseed in the finishing diets did increase the saturated fatty acid content of the longissimus dorsi. However, animals fed cottonseed exhibited greater lightness and redness of beef. In this study, the addition of vitamin E did not affect qualitative characteristics of meat.
Resumo:
Since the discovery that Delta 9-tetrahydrocannabinol and related cannabinoids from Cannabis sativa L. act on specific physiological receptors in the human body and the subsequent elucidation of the mammalian endogenous cannabinoid system, no other natural product class has been reported to mimic the effects of cannabinoids. We recently found that N-alkyl amides from purple coneflower (Echinacea spp.) constitute a new class of cannabinomimetics, which specifically engage and activate the cannabinoid type-2 (CB2) receptors. Cannabinoid type-1 (CB1) and CB2 receptors belong to the family of G protein-coupled receptors and are the primary targets of the endogenous cannabinoids N-arachidonoyl ethanolamine and 2-arachidonoyl glyerol. CB2 receptors are believed to play an important role in distinct pathophysiological processes, including metabolic dysregulation, inflammation, pain, and bone loss. CB2 receptors have, therefore, become of interest as new targets in drug discovery. This review focuses on N-alkyl amide secondary metabolites from plants and underscores that this group of compounds may provide novel lead structures for the development of CB2-directed drugs.
Resumo:
OBJECTIVES: The endocannabinoid system is an endogenous lipid signalling network comprising arachidonic-acid-derived ligands, cannabinoid (CB) receptors, transporters and endocannabinoid degrading enzymes. The CB(1) receptor is predominantly expressed in neurons but is also co-expressed with the CB(2) receptor in peripheral tissues. In recent years, CB receptor ligands, including Delta(9)-tetrahydrocannabinol, have been proposed as potential anticancer agents. KEY FINDINGS: This review critically discusses the pharmacology of CB receptor activation as a novel therapeutic anticancer strategy in terms of ligand selectivity, tissue specificity and potency. Intriguingly, antitumour effects mediated by cannabinoids are not confined to inhibition of cancer cell proliferation; cannabinoids also reduce angiogenesis, cell migration and metastasis, inhibit carcinogenesis and attenuate inflammatory processes. In the last decade several new selective CB(1) and CB(2) receptor agents have been described, but most studies in the area of cancer research have used non-selective CB ligands. Moreover, many of these ligands exert prominent CB receptor-independent pharmacological effects, such as activation of the G-protein-coupled receptor GPR55, peroxisome proliferator-activated receptor gamma and the transient receptor potential vanilloid channels. SUMMARY: The role of the endocannabinoid system in tumourigenesis is still poorly understood and the molecular mechanisms of cannabinoid anticancer action need to be elucidated. The development of CB(2)-selective anticancer agents could be advantageous in light of the unwanted central effects exerted by CB(1) receptor ligands. Probably the most interesting question is whether cannabinoids could be useful in chemoprevention or in combination with established chemotherapeutic agents.
Resumo:
Δ(9)-tetrahydrocannabinol (Δ(9)-THC) is the major psychoactive cannabinoid in hemp (Cannabis sativa L.) and responsible for many of the pharmacological effects mediated via cannabinoid receptors. Despite being the major cannabinoid scaffold in nature, Δ(9)-THC double bond isomers remain poorly studied. The chemical scaffold of tetrahydrocannabinol can be assembled from the condensation of distinctly substituted phenols and monoterpenes. Here we explored a microwave-assisted one pot heterogeneous synthesis of Δ(3)-THC from orcinol (1a) and pulegone (2). Four Δ(3)-THC analogues and corresponding Δ(4a)-tetrahydroxanthenes (Δ(4a)-THXs) were synthesized regioselectively and showed differential binding affinities for CB1 and CB2 cannabinoid receptors. Here we report for the first time the CB1 receptor binding of Δ(3)-THC, revealing a more potent receptor binding affinity for the (S)-(-) isomer (hCB1Ki = 5 nM) compared to the (R)-(+) isomer (hCB1Ki = 29 nM). Like Δ(9)-THC, also Δ(3)-THC analogues are partial agonists at CB receptors as indicated by [(35)S]GTPγS binding assays. Interestingly, the THC structural isomers Δ(4a)-THXs showed selective binding and partial agonism at CB2 receptors, revealing a simple non-natural natural product-derived scaffold for novel CB2 ligands.
Resumo:
Addition of a saturated fatty acid (SFA) induced a strong increase in heat shock (HS) mRNA transcription when cells were heat-shocked at 37 degrees C, whereas treatment with an unsaturated fatty acid (UFA) reduced or eliminated the level of HS gene transcription at 37 degrees C. Transcription of the delta 9-desaturase gene (Ole1) of Histoplasma capsulatum, whose gene product is responsible for the synthesis of UFA, is up-regulated in a temperature-sensitive strain. We show that when the L8-14C mutant of Saccharomyces cerevisiae, which has a disrupted Ole1 gene, is complemented with its own Ole1 coding region under control of its own promoter or Ole1 promoters of H. capsulatum, the level of HS gene transcription depends on the activity of the promoters. Fluorescence anisotropy of mitochondrial membranes of completed strains corresponded to the different activity of the Ole1 promoter used. We propose that the SFA/UFA ratio and perturbation of membrane lipoprotein complexes are involved in the perception of rapid temperature changes and under HS conditions disturbance of the preexisting membrane physical state causes transduction of a signal that induces transcription of HS genes.
Resumo:
Because previous studies showed that polyunsaturated fatty acids can reduce the contraction rate of spontaneously beating heart cells and have antiarrhythmic effects, we examined the effects of the fatty acids on the electrophysiology of the cardiac cycle in isolated neonatal rat cardiac myocytes. Exposure of cardiomyocytes to 10 microM eicosapentaenoic acid for 2-5 min markedly increased the strength of the depolarizing current required to elicit an action potential (from 18.0 +/- 2.4 pA to 26.8 +/- 2.7 pA, P < 0.01) and the cycle length of excitability (from 525 ms to 1225 ms, delta = 700 +/- 212, P < 0.05). These changes were due to an increase in the threshold for action potential (from -52 mV to -43 mV, delta = 9 +/- 3, P < 0.05) and a more negative resting membrane potential (from -52 mV to -57 mV, delta = 5 +/- 1, P < 0.05). There was a progressive prolongation of intervals between spontaneous action potentials and a slowed rate of phase 4 depolarization. Other polyunsaturated fatty acids--including docosahexaenoic acid, linolenic acid, linoleic acid, arachidonic acid, and its nonmetabolizable analog eicosatetraynoic acid, but neither the monounsaturated oleic acid nor the saturated stearic acid--had similar effects. The effects of the fatty acids could be reversed by washing with fatty acid-free bovine serum albumin. These results show that free polyunsaturated fatty acids can reduce membrane electrical excitability of heart cells and provide an electrophysiological basis for the antiarrhythmic effects of these fatty acids.
Resumo:
Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz
Resumo:
Although there has been considerable research into the adverse effects of cannabis, less attention has been directed toward subjective effects that may be associated with ongoing cannabis use. Examination of self-reported cannabis effects is an important issue in understanding the widespread use of cannabis. While reviews have identified euphoria as a primary factor in maintaining cannabis use, relaxation is the effect reported most commonly in naturalistic studies of cannabis users, irrespective of the method used. Self-reported effects in 12 naturalistic and 18 laboratory studies were compared. Regardless of methodology there was considerable variation in the effects experienced. Variation has been reported in terms of opposite effects being experienced by different individuals, variation of effects by individuals within a single occasion and between occasions of use. Factors that might explain this variation are outlined. Limitations of the available literature and suggested directions for future research are discussed.